• Title/Summary/Keyword: Hutchinson-Gilford progeria syndrome

Search Result 2, Processing Time 0.015 seconds

Detection of Cerebrovascular Disease in a Child with Hutchinson-Gilford Progeria Syndrome Using MR Angiography: A Case Report (Hutchison-Gilford 조로증 증후군 환아에서의 뇌 자기공명 혈관조영술 소견: 증례 보고)

  • Jae Ho Lee;Ha Young Lee;Myung Kwan Lim;Young Hye Kang
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.6
    • /
    • pp.1360-1365
    • /
    • 2022
  • Hutchinson-Gilford progeria syndrome (HGPS) is a rare, progressive, premature aging syndrome with early morbidity due to cardiovascular and cerebrovascular diseases. Clinical symptoms are very diverse, including non-specific symptoms such as growth retardation, scleroderma, alopecia, and osteoporosis, as well as hypertension and cardiovascular diseases that occur in childhood and adolescence due to accelerated vascular aging. In patients with HGPS, MR angiography is recommended for early diagnosis of asymptomatic stroke or vascular changes and to assess increased risk of cerebrovascular disease. We report the second domestic case of HGPS confirmed by genetic analysis in a 5-year-old child with typical clinical features, and the first English case report in Korea to present brain MR angiography findings.

Alleviation of Senescence via ATM Inhibition in Accelerated Aging Models

  • Kuk, Myeong Uk;Kim, Jae Won;Lee, Young-Sam;Cho, Kyung A;Park, Joon Tae;Park, Sang Chul
    • Molecules and Cells
    • /
    • v.42 no.3
    • /
    • pp.210-217
    • /
    • 2019
  • The maintenance of mitochondrial function is closely linked to the control of senescence. In our previous study, we uncovered a novel mechanism in which senescence amelioration in normal aging cells is mediated by the recovered mitochondrial function upon Ataxia telangiectasia mutated (ATM) inhibition. However, it remains elusive whether this mechanism is also applicable to senescence amelioration in accelerated aging cells. In this study, we examined the role of ATM inhibition on mitochondrial function in Hutchinson-Gilford progeria syndrome (HGPS) and Werner syndrome (WS) cells. We found that ATM inhibition induced mitochondrial functional recovery accompanied by metabolic reprogramming, which has been known to be a prerequisite for senescence alleviation in normal aging cells. Indeed, the induced mitochondrial metabolic reprogramming was coupled with senescence amelioration in accelerated aging cells. Furthermore, the therapeutic effect via ATM inhibition was observed in HGPS as evidenced by reduced progerin accumulation with concomitant decrease of abnormal nuclear morphology. Taken together, our data indicate that the mitochondrial functional recovery by ATM inhibition might represent a promising strategy to ameliorate the accelerated aging phenotypes and to treat age-related disease.