• 제목/요약/키워드: Hurwitz type formula

검색결과 5건 처리시간 0.019초

MULTIPLICATION FORMULA AND (w, q)-ALTERNATING POWER SUMS OF TWISTED q-EULER POLYNOMIALS OF THE SECOND KIND

  • CHOI, JI EUN;KIM, AHYUN
    • Journal of applied mathematics & informatics
    • /
    • 제39권3_4호
    • /
    • pp.455-467
    • /
    • 2021
  • In this paper, we define twisted q-Euler polynomials of the second kind and explore some properties. We find generating function of twisted q-Euler polynomials of the second kind. Also, we investigate twisted q-Raabe's multiplication formula and (w, q)-alternating power sums of twisted q-Euler polynomials of the second kind. At the end, we define twisted q-Hurwitz's type Euler zeta function of the second kind.

AN EXTENSION OF THE EXTENDED HURWITZ-LERCH ZETA FUNCTIONS OF TWO VARIABLES

  • Choi, Junesang;Parmar, Rakesh K.;Saxena, Ram K.
    • 대한수학회보
    • /
    • 제54권6호
    • /
    • pp.1951-1967
    • /
    • 2017
  • We aim to introduce a further extension of a family of the extended Hurwitz-Lerch Zeta functions of two variables. We then systematically investigate several interesting properties of the extended function such as its integral representations which provide extensions of various earlier corresponding results of two and one variables, its summation formula, its Mellin-Barnes type contour integral representations, its computational representation and fractional derivative formulas. A multi-parameter extension of the extended Hurwitz-Lerch Zeta function of two variables is also introduced. Relevant connections of certain special cases of the main results presented here with some known identities are pointed out.

MORPHISMS BETWEEN FANO MANIFOLDS GIVEN BY COMPLETE INTERSECTIONS

  • Choe, Insong
    • 충청수학회지
    • /
    • 제22권4호
    • /
    • pp.689-697
    • /
    • 2009
  • We study the existence of surjective morphisms between Fano manifolds of Picard number 1, when the source is given by the intersection of a cubic hypersurface and either a quadric or another cubic hypersurface in a projective space.

  • PDF

IDENTITIES AND RELATIONS ON THE q-APOSTOL TYPE FROBENIUS-EULER NUMBERS AND POLYNOMIALS

  • Kucukoglu, Irem;Simsek, Yilmaz
    • 대한수학회지
    • /
    • 제56권1호
    • /
    • pp.265-284
    • /
    • 2019
  • The main purpose of this paper is to investigate the q-Apostol type Frobenius-Euler numbers and polynomials. By using generating functions for these numbers and polynomials, we derive some alternative summation formulas including powers of consecutive q-integers. By using infinite series representation for q-Apostol type Frobenius-Euler numbers and polynomials including their interpolation functions, we not only give some identities and relations for these numbers and polynomials, but also define generating functions for new numbers and polynomials. Further we give remarks and observations on generating functions for these new numbers and polynomials. By using these generating functions, we derive recurrence relations and finite sums related to these numbers and polynomials. Moreover, by applying higher-order derivative to these generating functions, we derive some new formulas including the Hurwitz-Lerch zeta function, the Apostol-Bernoulli numbers and the Apostol-Euler numbers. Finally, for an application of the generating functions, we derive a multiplication formula, which is very important property in the theories of normalized polynomials and Dedekind type sums.

ON THE ANALOGS OF BERNOULLI AND EULER NUMBERS, RELATED IDENTITIES AND ZETA AND L-FUNCTIONS

  • Kim, Tae-Kyun;Rim, Seog-Hoon;Simsek, Yilmaz;Kim, Dae-Yeoul
    • 대한수학회지
    • /
    • 제45권2호
    • /
    • pp.435-453
    • /
    • 2008
  • In this paper, by using q-deformed bosonic p-adic integral, we give $\lambda$-Bernoulli numbers and polynomials, we prove Witt's type formula of $\lambda$-Bernoulli polynomials and Gauss multiplicative formula for $\lambda$-Bernoulli polynomials. By using derivative operator to the generating functions of $\lambda$-Bernoulli polynomials and generalized $\lambda$-Bernoulli numbers, we give Hurwitz type $\lambda$-zeta functions and Dirichlet's type $\lambda$-L-functions; which are interpolated $\lambda$-Bernoulli polynomials and generalized $\lambda$-Bernoulli numbers, respectively. We give generating function of $\lambda$-Bernoulli numbers with order r. By using Mellin transforms to their function, we prove relations between multiply zeta function and $\lambda$-Bernoulli polynomials and ordinary Bernoulli numbers of order r and $\lambda$-Bernoulli numbers, respectively. We also study on $\lambda$-Bernoulli numbers and polynomials in the space of locally constant. Moreover, we define $\lambda$-partial zeta function and interpolation function.