• Title/Summary/Keyword: Huntington disease

Search Result 45, Processing Time 0.026 seconds

Neuroprotective effect of caffeic acid phenethyl ester in 3-nitropropionic acid-induced striatal neurotoxicity

  • Bak, Jia;Kim, Hee Jung;Kim, Seong Yun;Choi, Yun-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.3
    • /
    • pp.279-286
    • /
    • 2016
  • Caffeic acid phenethyl ester (CAPE), derived from honeybee hives, is a bioactive compound with strong antioxidant activity. This study was designed to test the neuroprotective effect of CAPE in 3-nitropropionic acid (3NP)-induced striatal neurotoxicity, a chemical model of Huntington's disease (HD). Initially, to test CAPE's antioxidant activity, a 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS) antioxidant assay was employed, and CAPE showed a strong direct radical-scavenging effect. In addition, CAPE provided protection from 3NP-induced neuronal cell death in cultured striatal neurons. Based on these observations, the in vivo therapeutic potential of CAPE in 3NP-induced HD was tested. For this purpose, male C57BL/6 mice were repeatedly given 3NP to induce HD-like pathogenesis, and 30 mg/kg of CAPE or vehicle (5% dimethyl sulfoxide and 95% peanut oil) was administered daily. CAPE did not cause changes in body weight, but it reduced mortality by 29%. In addition, compared to the vehicle-treated group, robustly reduced striatal damage was observed in the CAPE-treated animals, and the 3NP-induced behavioral deficits on the rotarod test were significantly rescued after the CAPE treatment. Furthermore, immunohistochemical data showed that immunoreactivity to glial fibrillary acidic protein (GFAP) and CD45, markers for astrocyte and microglia activation, respectively, were strikingly reduced. Combined, these data unequivocally indicate that CAPE has a strong antioxidant effect and can be used as a potential therapeutic agent against HD.

FDG PET Imaging For Dementia (치매의 FDG PET 영상)

  • Ahn, Byeong-Cheol
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.2
    • /
    • pp.102-111
    • /
    • 2007
  • Dementia is a major burden for many countries including South Korea, where life expectancy is continuously growing and the proportion of aged people is rapidly growing. Neurodegenerative disorders, such as, Alzheimer disease, dementia with Lewy bodies, frontotemporal dementia, Parkinson disease, progressive supranuclear palsy, corticobasal degeneration, Huntington disease, can cause dementia, and cerebrovascular disease also can cause dementia. Depression or hypothyroidism also can cause cognitive deficits, but they are reversible by management of underlying cause unlike the forementioned dementias. Therefore these are called pseudodementia. We are entering an era of dementia care that will be based upon the identification of potentially modifiable risk factors and early disease markers, and the application of new drugs postpone progression of dementias or target specific proteins that cause dementia. Efficient pharmacologic treatment of dementia needs not only to distinguish underlying causes of dementia but also to be installed as soon as possible. Therefore, differential diagnosis and early diagnosis of dementia are utmost importance. F-18 FDG PET is useful for clarifying dementing diseases and is also useful for early detection of the diseases. Purpose of this article is to review the current value of FDG PET for dementing diseases including differential diagnosis of dementia and prediction of evolving dementia.

Polyglutamine Residues from Machado-Joseph Disease Gene Enhance Formation of Aggregates of GST-Polyglutamine Fusion Protein in E. coli

  • Rhim, Hyang-Shuk;Bok, Kyoung-Sook;Chang, Mi-Jeong;Kim, In-Kyung;Park, Sung-Sup;Kang, Seong-Man
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.6
    • /
    • pp.663-668
    • /
    • 1998
  • Several neurodegenerative diseases such as Huntington's disease, dentatorubralpallidoluysian atrophy, spinobulbar muscular atrophy, Machado-Joseph disease, and spinocerebellar ataxias type 1 are associated with the aggregation of expanded glutamine repeats within their proteins. Generally, in clinically affected individuals, the expansion of the polyglutamine sequences is beyond 40 residues. To address the length of polyglutamine that forms aggregation, we have constructed plasmids encoding glutathione S-transferase (GST) Machado-Joseph disease gene fusion proteins containing polyglutamine and investigated the formation of aggregates in E. coli. Surprisingly, even $(Gin)_8$, in the normal range as well as $(Gin)_{65}$ in the pathogenic range enhanced the formation of insoluble protein aggregates, whereas $(Ser)_8$, and $(Aia)_8$, did not form aggregates. Our results indicate that the formation of protein aggregates in GST-polyglutamine proteins is specifically mediated by the polyglutamine repeat sequence within their protein structure. Our study may contribute to the understanding of the molecular mechanism of the formation of protein aggregates in neurodegenerative disorders and the development of preventative strategies.

  • PDF

Effects of Allium hookeri Extracts on Glutamate-induced Neurotoxicity in HT22 Cells (글루타메이트로 유발한 세포독성에 대한 삼채추출물의 뇌세포 보호 효과)

  • Kim, Ji-Yun;Ko, Wonmin;Kim, Ae-Jung
    • Korean Journal of Pharmacognosy
    • /
    • v.48 no.1
    • /
    • pp.31-37
    • /
    • 2017
  • Glutamate-induced oxidative stress results in neuro-degenerative disorders in many central nervous system (CNS) such as Alzheimer's disease, ischemia, Huntington's disease, and Parkinson's disease. Our study was performed to investigate neuroprotective effects of Allium hookeri extracts (leaf, root, and whole) on glutamate-induced HT22 cells. In this study, ethanol extract of A. hookeri showed the outstanding neuroprotective effect in HT22 cells. In addition, we found that ethanol extract of A. hookeri root increased heme oxygenase (HO)-1 in HT22 cells. Moreover, ethanol extract of A. hookeri root also upregulated nuclear accumulation of nuclear factor E2-related factor 2 (Nrf2) in HT22 cells. These results demonstrate that ethanol extract of A. hookeri root contributes neuroprotective effects against glutamate-induced oxidative stress in HT22 cells, via Nrf2-mediated HO-1 expression. Our study suggests that ethanol extract of A. hookeri root could be the potential agent for the treatment of many neuro-degenerative diseases.

Panax notoginseng inhibits LPS-induced pro-inflammatory mediators in microglia (삼칠근(三七根)의 LPS에 의해 활성화된 뇌신경교세포(腦神經膠細胞)로부터의 염증매개물질(炎症媒介物質) 생성억제효과(生成抑制效果))

  • Jung, Hyo-Won;Park, Yong-Ki
    • The Korea Journal of Herbology
    • /
    • v.21 no.4
    • /
    • pp.93-101
    • /
    • 2006
  • Objectives : Increasing evidence has linked chronic inflammation to a number of neurodegenerative disorders including Alzheimer's disease(AD), Parkinson's disease(PD) and Huntington's disease(HD) in the inflammatory process. Uncontrolled activation of microglia may directly toxic to neurons by releasing various substances such as inflammatory cytokines ($TNF-{\alpha}$, $IL-1{\beta}$ and IL-6), NO, PEG2 and superoxide. In this study, the immunomodulatory effects of the herbal extract Panax notoginseng on cultured BV2 microglial cells and primary microglia were investigated to address potential therapeutic or toxic effects. Notoginseng radix extracts extracted from the root of the plant using Methanol. Methods : Cells were stimulated with LPS and treated with notoginseng at different concentrations. Results : Notoginseng significantly decreased LPS-induced production of $TNF-{\alpha}$ and IL-6 by the cultured microglial cells in a dose-dependent manner. The activation of iNOS mRNA and secretion of nitric oxide(NO) in microglial cells were inhibited in microglial cells in a dose-dependent manner by notoginseng. Conclusion : These results indicate that notoginseng inhibits LPS-induced activation of microglial cells and demonstrates notoginseng possess anti-inflammatory and immunosuppressive properties in vitro.

  • PDF

Optimized Methods of Preimplantation Genetic Diagnosis for Trinucleotide Repeat Diseases of Huntington's Disease, Spinocerebellar Ataxia 3 and Fragile X Syndrome (삼핵산 반복서열 질환인 헌팅톤병, 척수소뇌성 운동실조증, X-염색체 취약 증후군의 착상전 유전진단 방법에 대한 연구)

  • Kim, Min-Jee;Lee, Hyoung-Song;Lim, Chun-Kyu;Cho, Jae-Won;Kim, Jin-Young;Koong, Mi-Kyoung;Son, In-Ok;Kang, Inn-Soo;Jun, Jin-Hyon
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.34 no.3
    • /
    • pp.179-188
    • /
    • 2007
  • Objectives: Many neurological diseases are known to be caused by expansion of trinucleotide repeats (TNRs). It is hard to diagnose the alteration of TNRs with single cell level for preimplantation genetic diagnosis (PGD). In this study, we describe methods optimized for PGD of TNRs related diseases such as Huntington's disease (HD), spinocerebellar ataxia 3 (SCA3) and fragile X syndrome (FXS). Methods: We performed the preclinical assays with heterozygous patient's lymphocytes by single cell PCR strategy. Fluorescent semi-nested PCR and fragment analysis using automatic genetic analyzer were applied for HD and SCA 3. Whole genome amplification with multiple displacement amplification (MDA) method and fluorescent PCR were carried out for FXS. Amplification and allele drop-out (ADO) rate were evaluated in each case. Results: The fluorescent semi-nested PCR of single lymphocyte showed 100.0% of amplification and 14.0% of ADO rate in HD, and 94.7% of amplification and 5.6% of ADO rate in SCA3, respectively. We could not detect the PCR product of CGG repeats in FXS using the fluorescent semi-nested PCR alone. After applying the MDA method in FXS, 84.2% of amplification and 31.3% of ADO rate were achieved. Conclusions: Fluorescent semi-nested PCR is a reliable method for PGD of HD and SCA3. The advanced MDA method overcomes the problem of amplification failure in CGG repeats of FXS case. Optimization of methods for single cell analysis could improve the sensitivity and reliability of PGD for complicated single gene disorders of TNRs.

Floridoside suppresses pro-inflammatory responses by blocking MAPK signaling in activated microglia

  • Kim, MinJeong;Li, Yong-Xin;Dewapriya, Pradeep;Ryu, BoMi;Kim, Se-Kwon
    • BMB Reports
    • /
    • v.46 no.8
    • /
    • pp.398-403
    • /
    • 2013
  • Inflammatory conditions mediated by activated microglia lead to chronic neuro-degenerative diseases such as Alzheimer's, Parkinson's, and Huntington's diseases. This study was conducted to determine the effect of floridoside isolated from marine red algae Laurencia undulata on LPS (100 ng/ml) activated inflammatory responses in BV-2 microglia cells. The results show that floridoside has the ability to suppress pro-inflammatory responses in microglia by markedly inhibiting the production of nitric oxide (NO) and reactive oxygen species (ROS). Moreover, floridoside down-regulated the protein and gene expression levels of iNOS and COX-2 by significantly blocking the phosphorylation of p38 and ERK in BV-2 cells. Collectively, these results indicate that floridoside has the potential to be developed as an active agent for the treatment of neuro-inflammation.

O(N log N) ALGORITHM FOR FINDING PRIMARY TANDEM REPEATS IN A DNA GENOMIC SEQUENCE

  • Ma, Sang-Back;Jun, Hyeong-Hwa
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • The genomes of organism are being published in an enormous speed. The genomes has a lot of intronic regions, and repeats constitute a substantial part of that. Repeats playa crucial role in DNA finger-printing, and detecting certain genomic diseases, such as Huntington disease, which has a high number of CAG repeats. Also, they throw important clues about the evolutionary history. Repeats are in two types, Tandem Repeats and Interspersed Repeats. In this paper we address ourselves to the problem of detecting Primary Tandem Repeats, which are tandem repeats that are not contained in any tandem repeats. We show that our algorithm takes O(n log n) time, where n is the length of genome.

  • PDF

Effect of Neurotrophic Factors on Neuronal Stem Cell Death

  • KimKwon, Yun-Hee
    • BMB Reports
    • /
    • v.35 no.1
    • /
    • pp.87-93
    • /
    • 2002
  • Neural cell survival is an essential concern in the aging brain and many diseases of the central nervous system. Neural transplantation of the stem cells are already applied to clinical trials for many degenerative neurological diseases, including Huntington's disease, Parkinson's disease, and strokes. A critical problem of the neural transplantation is how to reduce their apoptosis and improve cell survival. Neurotrophic factors generally contribute as extrinsic cues to promote cell survival of specific neurons in the developing mammalian brains, but the survival factor for neural stem cell is poorly defined. To understand the mechanism controlling stem cell death and improve cell survival of the transplanted stem cells, we investigated the effect of plausible neurotrophic factors on stem cell survival. The neural stem cell, HiB5, when treated with PDGF prior to transplantation, survived better than cells without PDGF. The resulting survival rate was two fold for four weeks and up to three fold for twelve weeks. When transplanted into dorsal hippocampus, they migrated along hippocampal alveus and integrated into pyramidal cell layers and dentate granule cell layers in an inside out sequence, which is perhaps the endogenous pathway that is similar to that in embryonic neurogenesis. Promotion of the long term-survival and differentiation of the transplanted neural precursors by PDGF may facilitate regeneration in the aging adult brain and probably in the injury sites of the brain.

Coenzyme Q10: a progress towards the treatment of neurodegenerative disease

  • Kumar, Peeyush;Kumar, Pramod;Ram, Alpana;Kuma, Mithilesh;Kumar, Rajeev
    • Advances in Traditional Medicine
    • /
    • v.10 no.4
    • /
    • pp.239-253
    • /
    • 2010
  • Coenzyme $Q_{10}$ ($CoQ_{10}$, or ubiquinone) is an electron carrier of the mitochondrial respiratory chain (electron transport chain) with antioxidant properties. In view of the involvement of $CoQ_{10}$ in oxidative phosphorylation and cellular antioxidant protection a deficiency in this quinone would be expected to contribute to disease pathophysiology by causing a failure in energy metabolism and antioxidant status. Indeed, a deficit in $CoQ_{10}$ status has been determined in a number of neuromuscular and neurodegenerative disorders. Primary disorders of $CoQ_{10}$ biosynthesis are potentially treatable conditions and therefore a high degree of clinical awareness about this condition is essential. A secondary loss of $CoQ_{10}$ status following HMG-CoA reductase inhibitor (statins) treatment has been implicated in the pathophysiology of the myotoxicity associated with this pharmacotherapy. $CoQ_{10}$ and its analogue, idebenone, have been widely used in the treatment of neurodegenerative and neuromuscular disorders. These compounds could potentially play a role in the treatment of mitochondrial disorders, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, Friedreich's ataxia, and other conditions which have been linked to mitochondrial dysfunction. This article reviews the physiological roles of $CoQ_{10}$, as well as the rationale and the role in clinical practice of $CoQ_{10}$ supplementation in different neurological diseases, from primary $CoQ_{10}$ deficiency to neurodegenerative disorders. These will help in future for treatment of patients suffering from neurodegenerative disease.