• Title/Summary/Keyword: Huntington's disease

Search Result 39, Processing Time 0.027 seconds

Effects of Allium hookeri Extracts on Glutamate-induced Neurotoxicity in HT22 Cells (글루타메이트로 유발한 세포독성에 대한 삼채추출물의 뇌세포 보호 효과)

  • Kim, Ji-Yun;Ko, Wonmin;Kim, Ae-Jung
    • Korean Journal of Pharmacognosy
    • /
    • v.48 no.1
    • /
    • pp.31-37
    • /
    • 2017
  • Glutamate-induced oxidative stress results in neuro-degenerative disorders in many central nervous system (CNS) such as Alzheimer's disease, ischemia, Huntington's disease, and Parkinson's disease. Our study was performed to investigate neuroprotective effects of Allium hookeri extracts (leaf, root, and whole) on glutamate-induced HT22 cells. In this study, ethanol extract of A. hookeri showed the outstanding neuroprotective effect in HT22 cells. In addition, we found that ethanol extract of A. hookeri root increased heme oxygenase (HO)-1 in HT22 cells. Moreover, ethanol extract of A. hookeri root also upregulated nuclear accumulation of nuclear factor E2-related factor 2 (Nrf2) in HT22 cells. These results demonstrate that ethanol extract of A. hookeri root contributes neuroprotective effects against glutamate-induced oxidative stress in HT22 cells, via Nrf2-mediated HO-1 expression. Our study suggests that ethanol extract of A. hookeri root could be the potential agent for the treatment of many neuro-degenerative diseases.

Optimized Methods of Preimplantation Genetic Diagnosis for Trinucleotide Repeat Diseases of Huntington's Disease, Spinocerebellar Ataxia 3 and Fragile X Syndrome (삼핵산 반복서열 질환인 헌팅톤병, 척수소뇌성 운동실조증, X-염색체 취약 증후군의 착상전 유전진단 방법에 대한 연구)

  • Kim, Min-Jee;Lee, Hyoung-Song;Lim, Chun-Kyu;Cho, Jae-Won;Kim, Jin-Young;Koong, Mi-Kyoung;Son, In-Ok;Kang, Inn-Soo;Jun, Jin-Hyon
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.34 no.3
    • /
    • pp.179-188
    • /
    • 2007
  • Objectives: Many neurological diseases are known to be caused by expansion of trinucleotide repeats (TNRs). It is hard to diagnose the alteration of TNRs with single cell level for preimplantation genetic diagnosis (PGD). In this study, we describe methods optimized for PGD of TNRs related diseases such as Huntington's disease (HD), spinocerebellar ataxia 3 (SCA3) and fragile X syndrome (FXS). Methods: We performed the preclinical assays with heterozygous patient's lymphocytes by single cell PCR strategy. Fluorescent semi-nested PCR and fragment analysis using automatic genetic analyzer were applied for HD and SCA 3. Whole genome amplification with multiple displacement amplification (MDA) method and fluorescent PCR were carried out for FXS. Amplification and allele drop-out (ADO) rate were evaluated in each case. Results: The fluorescent semi-nested PCR of single lymphocyte showed 100.0% of amplification and 14.0% of ADO rate in HD, and 94.7% of amplification and 5.6% of ADO rate in SCA3, respectively. We could not detect the PCR product of CGG repeats in FXS using the fluorescent semi-nested PCR alone. After applying the MDA method in FXS, 84.2% of amplification and 31.3% of ADO rate were achieved. Conclusions: Fluorescent semi-nested PCR is a reliable method for PGD of HD and SCA3. The advanced MDA method overcomes the problem of amplification failure in CGG repeats of FXS case. Optimization of methods for single cell analysis could improve the sensitivity and reliability of PGD for complicated single gene disorders of TNRs.

Floridoside suppresses pro-inflammatory responses by blocking MAPK signaling in activated microglia

  • Kim, MinJeong;Li, Yong-Xin;Dewapriya, Pradeep;Ryu, BoMi;Kim, Se-Kwon
    • BMB Reports
    • /
    • v.46 no.8
    • /
    • pp.398-403
    • /
    • 2013
  • Inflammatory conditions mediated by activated microglia lead to chronic neuro-degenerative diseases such as Alzheimer's, Parkinson's, and Huntington's diseases. This study was conducted to determine the effect of floridoside isolated from marine red algae Laurencia undulata on LPS (100 ng/ml) activated inflammatory responses in BV-2 microglia cells. The results show that floridoside has the ability to suppress pro-inflammatory responses in microglia by markedly inhibiting the production of nitric oxide (NO) and reactive oxygen species (ROS). Moreover, floridoside down-regulated the protein and gene expression levels of iNOS and COX-2 by significantly blocking the phosphorylation of p38 and ERK in BV-2 cells. Collectively, these results indicate that floridoside has the potential to be developed as an active agent for the treatment of neuro-inflammation.

Effect of Neurotrophic Factors on Neuronal Stem Cell Death

  • KimKwon, Yun-Hee
    • BMB Reports
    • /
    • v.35 no.1
    • /
    • pp.87-93
    • /
    • 2002
  • Neural cell survival is an essential concern in the aging brain and many diseases of the central nervous system. Neural transplantation of the stem cells are already applied to clinical trials for many degenerative neurological diseases, including Huntington's disease, Parkinson's disease, and strokes. A critical problem of the neural transplantation is how to reduce their apoptosis and improve cell survival. Neurotrophic factors generally contribute as extrinsic cues to promote cell survival of specific neurons in the developing mammalian brains, but the survival factor for neural stem cell is poorly defined. To understand the mechanism controlling stem cell death and improve cell survival of the transplanted stem cells, we investigated the effect of plausible neurotrophic factors on stem cell survival. The neural stem cell, HiB5, when treated with PDGF prior to transplantation, survived better than cells without PDGF. The resulting survival rate was two fold for four weeks and up to three fold for twelve weeks. When transplanted into dorsal hippocampus, they migrated along hippocampal alveus and integrated into pyramidal cell layers and dentate granule cell layers in an inside out sequence, which is perhaps the endogenous pathway that is similar to that in embryonic neurogenesis. Promotion of the long term-survival and differentiation of the transplanted neural precursors by PDGF may facilitate regeneration in the aging adult brain and probably in the injury sites of the brain.

Coenzyme Q10: a progress towards the treatment of neurodegenerative disease

  • Kumar, Peeyush;Kumar, Pramod;Ram, Alpana;Kuma, Mithilesh;Kumar, Rajeev
    • Advances in Traditional Medicine
    • /
    • v.10 no.4
    • /
    • pp.239-253
    • /
    • 2010
  • Coenzyme $Q_{10}$ ($CoQ_{10}$, or ubiquinone) is an electron carrier of the mitochondrial respiratory chain (electron transport chain) with antioxidant properties. In view of the involvement of $CoQ_{10}$ in oxidative phosphorylation and cellular antioxidant protection a deficiency in this quinone would be expected to contribute to disease pathophysiology by causing a failure in energy metabolism and antioxidant status. Indeed, a deficit in $CoQ_{10}$ status has been determined in a number of neuromuscular and neurodegenerative disorders. Primary disorders of $CoQ_{10}$ biosynthesis are potentially treatable conditions and therefore a high degree of clinical awareness about this condition is essential. A secondary loss of $CoQ_{10}$ status following HMG-CoA reductase inhibitor (statins) treatment has been implicated in the pathophysiology of the myotoxicity associated with this pharmacotherapy. $CoQ_{10}$ and its analogue, idebenone, have been widely used in the treatment of neurodegenerative and neuromuscular disorders. These compounds could potentially play a role in the treatment of mitochondrial disorders, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, Friedreich's ataxia, and other conditions which have been linked to mitochondrial dysfunction. This article reviews the physiological roles of $CoQ_{10}$, as well as the rationale and the role in clinical practice of $CoQ_{10}$ supplementation in different neurological diseases, from primary $CoQ_{10}$ deficiency to neurodegenerative disorders. These will help in future for treatment of patients suffering from neurodegenerative disease.

Functional Expression of the Internal Rotenone-Insensitive NADH-Quinone Oxidoreductase (NDI1) Gene of Saccharomyces cerevisiae in Human HeLa Cells

  • Seo, Byoung-Boo
    • Journal of Embryo Transfer
    • /
    • v.25 no.1
    • /
    • pp.35-42
    • /
    • 2010
  • Many studies propose that dysfunction of mitochondrial proton-translocating NADH-ubiquinone oxidoreductase (complex I) is associated with neurodegenerative disorders, such as Parkinson's disease and Huntington's disease. Mammalian mitochondrial proton-translocating NADH-quinone oxidoreductase (complex I) consists of at least 46 different subunits. In contrast, the NDI1 gene of Saccharomyces cerevisiae is a single subunit rotenone-insensitive NADH-quinone oxidoreductase that is located on the matrix side of the inner mitochondrial membrane. With a recombinant adeno-associated virus vector carrying the NDI1 gene (rAAV-NDI1) as the gene delivery method, we were able to attain high transduction efficiencies even in the human epithelial cervical cancer cells that are difficult to transfect by lipofection or calcium phosphate precipitation methods. Using a rAAV-NDI1, we demonstrated that the Ndi1 enzyme is successfully expressed in HeLa cells. The expressed Ndi1 enzyme was recognized to be localized in mitochondria by confocal immunofluorescence microscopic analyses and immunoblotting. Using digitonin-permeabilized cells, it was shown that the NADH oxidase activity of the NDI1-transduced HeLa cells were not affected by rotenone which is inhibitor of complex I, but was inhibited by flavone and antimycin A. The NDI1-transduced cells were able to grow in media containing rotenone. In contrast, control cells that did not receive the NDI1 gene failed to survive. In particular, in the NDI1-transduced cells, the yeast enzyme becomes integrated into the human respiratory chain. It is concluded that the NDI1 gene provides a potentially useful tool for gene therapy of mitochondrial diseases caused by complex I deficiency.

A Case Report of a Delayed Vascular Chorea Patient Treated with Sukjihwangbogan-tang-gagam (소뇌경색의 후유증으로 발생한 지연성 혈관 무도병 증례 보고 : 협진 치험 1례)

  • Ok, Hyo-joon;Park, Yeong-hwa;Lim, Bo-ra;Kwon, Do-ick;Choi, Min-ki;Nam, Su-hyun
    • The Journal of Internal Korean Medicine
    • /
    • v.37 no.5
    • /
    • pp.741-749
    • /
    • 2016
  • Objective: To evaluate the effect of Sukjihwangbogan-tang-gagam (熟地黃補肝湯加減) in a patient with delayed vascular chorea. Methods: A vascular chorea patient was treated with acupuncture, moxibustion, and herbal medicine (Sukjihwangbogan-tang-gagam). Results: Improvements in the Unified Huntington’s Disease Rating Scale (UHDRS), UFMG Sydenham’s Chorea Rating Scale (USCRS) (especially the scale of Activity of Daily Living (ADL)) (dysarthria 2→0, tongue protrusion 3→1, chorea 3→1, handwriting 3→1), and a Visual Analogue Scale (VAS) (8→2) were observed after the Sukjihwangbogan-tang-gagam treatment. Conclusions: Sukjihwangbogan-tang-gagam may be an effective treatment for patients with delayed vascular chorea.

Functional Expression of Saccharomyces cerevisiae NADH-quinone Oxidoreductase (NDI1) Gene in the AML12 Mouse Liver Hepatocytes for the Applying Embryonic Stem Cell

  • Seo, Byoung-Boo;Park, Hum-Dai
    • Reproductive and Developmental Biology
    • /
    • v.35 no.4
    • /
    • pp.427-434
    • /
    • 2011
  • Mitochondria diseases have been reported to involve structural and functional defects of complex I-V. Especially, many of these diseases are known to be related to dysfunction of mitochondrial proton-translocating NADH-ubiquinone oxidoreductase (complex I). The dysfunction of mitochondria complex I is associated with neurodegenerative disorders, such as Parkinson's disease, Huntington's disease, and Leber's hereditary optic neuropathy (LHON). Mammalian mitochondrial proton-translocating NADH-quinone oxidoreductase (complex I) is largest and consists of at least 46 different subunits. In contrast, the NDI1 gene of Saccharomyces cerevisiae is a single subunit rotenone-insensitive NADH-quinone oxidoreductase that is located on the matrix side of the inner mitochondrial membrane. The Saccharomyces cerevisiae NDI1 gene using a recombinant adeno-associated virus vector (rAAV-NDI1) was successfully expressed in AML12 mouse liver hepatocytes and the NDI1-transduced cells were able to grow in media containing rotenone. In contrast, control cells that did not receive the NDI1 gene failed to survive. The expressed Ndi1 enzyme was recognized to be localized in mitochondria by confocal immunofluorescence microscopic analyses and immunoblotting. Using digitonin-permeabilized cells, it was shown that the NADH oxidase activity of the NDI1-transduced cells was not affected by rotenone which is inhibitor of complex I, but was inhibited by antimycin A. Furthermore, these results indicate that Ndi1 can be functionally expressed in the AML12 mouse liver hepatocytes. It is conceivable that the NDI1 gene is powerful tool for gene therapy of mitochondrial diseases caused by complex I deficiency. In the future, we will attempt to functionally express the NDI1 gene in mouse embryonic stem (mES) cell.

Electroconvulsive Therapy for Psychiatric Disorders in Elderly Adults (노년기 정신장애의 전기경련치료)

  • Joo, Eun-Jeong;Kim, Hee Cheol;Kang, Ung Gu;Lee, Nam Young;Park, Seung Hyun;Kim, Jung Min;Kim, Yong Sik;Chung, In Won
    • Korean Journal of Biological Psychiatry
    • /
    • v.27 no.2
    • /
    • pp.42-57
    • /
    • 2020
  • Electroconvulsive therapy (ECT) is indicated for various mental disorders (e.g., major depressive disorder, schizophrenia, and bipolar disorder) and the behavioral and psychological symptoms of dementia in elderly patients. Furthermore, ECT is a useful first-line treatment in emergency and crisis situations such as suicide risk, violent behavior, catatonia, and food refusal, which are more frequent in elderly patients. ECT is also effective in the treatment of the motor symptoms of neurological disorders, such as Parkinson's disease and Huntington's disease. Due to the high risk of various physical diseases, the comorbid physical conditions of elderly patients should be individually controlled to optimize ECT treatment. Compared to young adults, in elderly patients the seizure threshold is higher, the seizure duration is shorter, and the anesthetic dose is lower. On the contrary, the response rate in the elderly is both faster and higher. Considering potential cognitive decline and the prevention of further deterioration of cognitive function in elderly patients, in the absence of significant comorbidities, twice weekly sessions and right unilateral electrode placement with a lower seizure threshold and less cognitive effect are preferred to bilateral electrode placement, which has a high risk of adverse cognitive effects. After an acute course of ECT, continuation and maintenance of ECT, combined with prescription of therapeutic drugs, may prevent possible relapse or recurrence of mental disorders. In conclusion, ECT can be used to treat mental disorders in elderly adults, with safety and effectiveness comparable to that in young adults.

Synthetic 3',4'-Dihydroxyflavone Exerts Anti-Neuroinflammatory Effects in BV2 Microglia and a Mouse Model

  • Kim, Namkwon;Yoo, Hyung-Seok;Ju, Yeon-Joo;Oh, Myung Sook;Lee, Kyung-Tae;Inn, Kyung-Soo;Kim, Nam-Jung;Lee, Jong Kil
    • Biomolecules & Therapeutics
    • /
    • v.26 no.2
    • /
    • pp.210-217
    • /
    • 2018
  • Neuroinflammation is an immune response within the central nervous system against various proinflammatory stimuli. Abnormal activation of this response contributes to neurodegenerative diseases such as Parkinson disease, Alzheimer's disease, and Huntington disease. Therefore, pharmacologic modulation of abnormal neuroinflammation is thought to be a promising approach to amelioration of neurodegenerative diseases. In this study, we evaluated the synthetic flavone derivative 3',4'-dihydroxyflavone, investigating its anti-neuroinflammatory activity in BV2 microglial cells and in a mouse model. In BV2 microglial cells, 3',4'-dihydroxyflavone successfully inhibited production of chemokines such as nitric oxide and prostaglandin $E_2$ and proinflammatory cytokines such as tumor necrosis factor alpha, interleukin 1 beta, and interleukin 6 in BV2 microglia. It also inhibited phosphorylation of mitogen-activated protein kinase (MAPK) and nuclear factor $(NF)-{\kappa}B$ activation. This indicates that the anti-inflammatory activities of 3',4'-dihydroxyflavone might be related to suppression of the proinflammatory MAPK and $NF-{\kappa}B$ signaling pathways. Similar anti-neuroinflammatory activities of the compound were observed in the mouse model. These findings suggest that 3',4'-dihydroxyflavone is a potential drug candidate for the treatment of microglia-related neuroinflammatory diseases.