• Title/Summary/Keyword: Humic substances (HS)

Search Result 19, Processing Time 0.02 seconds

Positive Effects of Humic Substances on Plant Growth and Biological Soil Indicators when Spring barley is Green Manured on Reclaimed Soils (처리토에 녹비 식물 청보리 경작 시 휴믹 물질이 식물생장 및 생물학적 토양 인자에 주는 긍정적 영향)

  • Sua Kang;Hyesun Park;Younrho Lee;Bumhan Bae
    • Journal of Soil and Groundwater Environment
    • /
    • v.29 no.1
    • /
    • pp.51-62
    • /
    • 2024
  • A study was performed to investigate the positive impacts of humic substances (HS) on the growth of green barley, a type of green manure plant. The study was conducted in a pot culture using two different types of reclaimed soils that had been treated by land farming (DDC) and thermal desorption (YJ) methods, respectively. The experimental conditions consisted of three treatments: plant only (P), plant plus 2% HS, and no plant (control). After 89 days of culture in a controlled growth chamber, the growth of spring barley and activity of seven soil enzymes were measured. The results indicated that the addition of HS had a substantial (p<0.10) positive effect on shoot biomass in both types of soil. Furthermore, the addition of HS notably (p<0.05) enhanced all seven soil enzyme activities in both soils. Both the aboveground and belowground parts of barley plants were returned to soil and aged for 10 weeks in the same growth chamber, which resulted in notable enhancement in soil health indicators. These improvements included an increase in organic matter, a drop in bulk density, and an increase in the activity of seven different soil enzymes. When lentil seeds were planted in the aged soils, the development of the seedlings was more vigorous than that in the control in both soils, although allelopathy of barley suppressed lentil germination in soil with pH 7.0 but not in soil with pH 8.5.

Effects of Humic Substances on the Changes of Dissolved Organic Matter Characteristics by Biodegradation (생분해 과정 중 용존 유기물 특성 변화에 미치는 휴믹물질의 영향)

  • Park, Min-Hye;Lee, Bo-Mi;Lee, Tae-Hwan;Hur, Jin;Yang, Hee-Jeong
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.3
    • /
    • pp.419-424
    • /
    • 2009
  • Characteristics of humic substances on the changes in dissolved organic matter (DOM) characteristics by biodegradation was investigated using three types of the artificial water samples composed of glucose and Suwannee River fulvic acid (SRFA). Some selected DOM characteristics including the specific UV absorbance (SUVA), the synchronous fluorescence spectra and the molecular weight (MW) were compared for the artificial water samples before and after 28-day microbial incubation. The changes of the DOM characteristics were minimal for SRFA during the incubation whereas they were significant for glucose. SUVA, dissolved organic carbon (DOC)-normalized fluorescence intensity, and MW values of glucose increased, suggesting that such labile organic compounds could be exclusively transformed into more humidified materials by biodegradation. For glucose-SRFA mixture, the selected DOM characteristics were greater than those estimated using the assumption that the individual changes of either glucose or SRFA are conservative for the mixture of the two materials. Our results suggest that the presence of humic substances (HS) may lead to the enhancement of the formation of refractory organic materials during biodegradation of labile compounds. Detailed analyses of size exclusion chromatography (SEC) revealed that the enhancement occurred for the DOM mixture with a MW range between 500 Da to 4000 Da.

Polycyclic Aromatic Hydrocarbon (PAH) Binding to Dissolved Humic Substances (HS): Size Exclusion Effect

  • Hur, Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.3
    • /
    • pp.12-19
    • /
    • 2004
  • Binding mechanisms of polycyclic aromatic hydrocarbons (PAHs) with a purified Aldrich humic acid (PAHA) and its ultrafiltration (UF) size fractions were investigated. Organic carbon normalized binding coefficient ($K_oc$) values were estimated by both a conventional Stern-Volmer fluorescence quenching technique and a modified fluorescence quenching method. Pyrene $K_oc$ values depended on PAHA concentration as well as freely dissolved pyrene concentration. Such nonlinear sorption-type behaviors suggested the existence of specific interactions. Smaller molecular size PAH (naphthalene) exhibited higher $K_oc$ value with medium-size PAHA UF fractions whereas larger size PAH (pyrene) had higher extent of binding with larger PAHA UF fractions. The inconsistent observation for naphthalene versus pyrene was well explained by size exclusion effect, one of the previously suggested specific mechanisms for PAH binding. In general, the extent of pyrene binding increased with lower pH likely due to the neutralization of acidic functional groups in HS and the subsequent increase in hydrophobic HS region. However, pyrene $K_oc$ results with a large UF fraction (>100K Da) corroborated the existence of the size exclusion effect as demonstrated by an increase in $K_oc$ values at a certain higher pH range. The size exclusion effect appears to be effective only for the specific conditions (HS size or pH) that render HS hole st겨ctures to fit a target PAH.

Influence of Solution pH on Pyrene Binding to Sorption-Fractionated and Kaolinite-Bound Humic Substance

  • Hur Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.5
    • /
    • pp.61-69
    • /
    • 2005
  • Changes in pyrene binding by dissolved and kaolinite-associated humic substances (HS) due to HS adsorptive fractionation processes were examined using purified Aldrich humic acid (PAHA) at different pH (4, 7 and 9). Irrespective of solution pH, molecular weight (MW) fractionation occurred upon adsorption of PAHA onto kaolinite, resulting in the deviation of residual PAHA MW from the original MW prior to sorption. Variation in $K_{OC}$ by bulk PAHA was observed at different pH due to relative contributions of partitioning and size exclusion effects (i.e., specific interactions). For all pH conditions investigated, carbon-normalized pyrene binding coefficients for nonadsorbed, residual fractions $(K_{OC}(res))$ were different from the original dissolved PAHA $K_{OC}$ value $(K_{OC}(orig))$ prior to contact with the kaolinite suspensions. Positive correlations between pyrene $(K_{OC}(res))$ and weight-average molecular weight $(MW_W)$ for residual PAHA fractions were observed for pH 7 and 9. However, such a positive correlation was not found at pH 4 due to the absence of the dramatic fractionation observed for high pH conditions (i.e., exclusive fractionation with respect to higher MW), suggesting that actual MW distribution pattern is more important for sorption-fractionated HS than the composite MW value. For adsorbed PAHA, conformational changes of PAHA upon adsorption seem to be important for the extent of pyrene binding. At relatively high pH (7 and 9), lower extent of pyrene binding was observed for adsorbed PAHA versus nonadsorbed PAHA. The conformation effects were more pronounced at higher pH.

Oxidative Coupling Reaction of Purified Aldrich Humic Acid by Horseradish Peroxidase (산화환원효소에 의한 휴믹산의 산화중합반응)

  • Jee, Sang-Hyun;Kim, Do-Gun;Kim, Jeong-Hyun;Ko, Seok-Oh
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.11
    • /
    • pp.1054-1062
    • /
    • 2010
  • Oxidative coupling reactions of humic substances (HS) can be catalyzed by a variety of natural extracellular enzymes and metal oxides. In this study, property changes of HS induced by a natural enzyme, horseradish peroxidase (HRP), and the effect of it to microfiltration (MF) were investigated. PAHA was transformed by oxidative coupling reaction with HRP and hydrogen peroxide ($H_2O_2$), verifying the catalytic effects of the HRP. Size exclusion chromatography (SEC) revealed that weight-average molecular weight (MWw) of PAHA was proportionally increased with the dosages of HRP and $H_2O_2$, indicating the transform action of HS into larger and complex molecules. An increase in the conformational stability of HS was achieved through the promotion of intermolecular covalent bondings between heterogeneous humic molecules. Spectroscopic analysis (fluorescence and infrared spectroscopy) proved that functional groups were transformed by the reaction. Additionally, HS and transformed products were undergone microfiltration (MF) to examine the treatment potential of them in a water treatment facility. Original HS could not be removed by MF but larger molecules of transformed products could be removed. Meanwhile, transformed products caused more fouling on the filtration than original HS. This results proved that natural organic matter (NOM) can be removed by MF after its increase in molecular size by oxidative coupling reaction.

Prediction of Coagulation/Flocculation Treatment Efficiency of Dissolved Organic Matter (DOM) Using Multiple DOM Characteristics (다중 유기물 특성 지표를 활용한 용존 유기물질 응집/침전 제거효율 예측)

  • Bo Young Kim;Ka-Young Jung;Jin Hur
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.6
    • /
    • pp.465-474
    • /
    • 2023
  • The chemical composition and molecular weight characteristics of dissolved organic matter (DOM) exert a profound influence on the efficiency of organic matter removal in water treatment systems, acting as efficiency predictive indicators. This research evaluated the primary chemical and molecular weight properties of DOM derived from diverse sources, including rivers, lakes, and biomasses, and assessed their relationship with the efficiency of coagulation/flocculation treatments. Dissolved organic carbon (DOC) removal efficiency through coagulation/flocculation exhibited significant correlations with DOM's hydrophobic distribution, the ratio of humic-like to protein-like fluorescence, and the molecular weight associated with humic substances (HS). These findings suggest that the DOC removal rate in coagulation/flocculation processes is enhanced by a higher presence of HS in DOM, an increased influence of externally sourced DOM, and more presence of high molecular weight compounds. The results of this study further posit that the efficacy of water treatment processes can be more accurately predicted when considering multiple DOM characteristics rather than relying on a singular trait. Based on major results from this study, a predictive model for DOC removal efficiency by coagulation/flocculation was formulated as: 24.3 - 7.83 × (fluorescence index) + 0.089 × (hydrophilic distribution) + 0.102 × (HS molecular weight). This proposed model, coupled with supplementary monitoring of influent organic matter, has the potential to enhance the design and predictive accuracy for coagulation/flocculation treatments targeting DOC removal in future applications.

The Characteristics of Soil Organic Matter

  • You Sun-Jae;Kim Jong-gu;Cho Eun-Il
    • Journal of Environmental Science International
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • The purpose of this study is to illustrate the characteristics of soil organic matter (SOM) and partition coefficient $(K_{DOC})$. Humic substances (HS) from eight soils of varying properties were extracted by two different methods. The dissolved organic carbon (DOC) concentration was stabilized in 22hrs. The ratio of UV absorbance at 465nm and 665nm (E4/E6 ratio) for HS were similar pattern for 8 soils. The extraction with increasing pH increased dissolution of SON. The ratio of organic carbon (OC) associated with HA and FA (the HA:FA ratio) was varied widely in accordance with the soils and was highly correlated to OC $content(\%)$ of the soils. in modeling metal speciation in soils and soil solutions, assumptions that all DOC in soil solution is associated with FA and that HA:FA ratio in SOM is constant have been made. The results of this study indicate that the validity of these assumptions is questionable. By sequential pH extraction, the $K_{DOC}$ showed in a linear correlation with pH.

Effect of Compost and Tillage on Soil Carbon Sequestration and Stability in Paddy Soil (논토양에서 퇴비시용 및 경운이 토양탄소 축적과 안정화에 미치는 영향)

  • Hong, Chang-Oh;Kang, Jum-Soon;Shin, Hyun-Moo;Cho, Jae-Hwan;Suh, Jeong-Min
    • Journal of Environmental Science International
    • /
    • v.22 no.11
    • /
    • pp.1509-1517
    • /
    • 2013
  • So far, most studies associated with soil carbon sequestration have been focused on long term aspect. However, information regarding soil carbon sequestration in short term aspect is limited. This study was conducted to determine changes of soil organic carbon content and stability of carbon in response to compost application rate and tillage management during rice growing season(150 days) in short term aspect. Under pot experiment condition, compost was mixed with an arable soil at rates corresponding to 0, 6, 12, and 24 Mg/ha. To determine effect of tillage on soil carbon sequestration, till and no-till treatments were set up in soils amended with application rate of 12 Mg/ha. Compost application and tillage management did not significantly affect soil organic carbon(SOC) content in soil at harvest time. Bulk density of soil was not changed significantly with compost application and tillage management. These might result from short duration of experiment. While hot water extractable organic carbon(HWEOC) content decreased with compost application, humic substances(HS) increased. Below ground biomass of rice increased with application of compost and till operation. From the above results, continuos application of compost and reduce tillage might improve increase in soil organic carbon content and stability of carbon in long term aspect.

The effect of organic matter on the removal of phosphorus through precipitation as struvite and calcium phosphate in synthetic dairy wastewater

  • Aleta, Prince;Parikh, Sanjai J.;Silchuk, Amy P.;Scow, Kate M.;Park, Minseung;Kim, Sungpyo
    • Membrane and Water Treatment
    • /
    • v.9 no.3
    • /
    • pp.163-172
    • /
    • 2018
  • This study investigated the effect of organic matter on the precipitation of struvite and calcium phosphate for phosphorus recovery from synthetic dairy wastewater. Batch precipitation experiments were performed to precipitate phosphorus from solutions containing $PO_4{^{3-}}$ and $NH_4{^+}$ by the addition of $Mg^{2+}$ and $Ca^{2+}$, separately, at varying pH, Mg/P and Ca/P molar ratios, and organic matter concentrations. Soluble total organic solids exhibited more inhibition to precipitation due to potential interaction with other dissolved ionic species involved in phosphorus precipitation. Xylan with low total acidity only exhibited significant inhibition at very high concentrations in synthetic wastewater (at up to 100 g/L). No significant inhibition was observed for Mg and Ca precipitation at relatively lower concentrations (at up to 1.2 g/L). MINTEQ simulations show that dissolved organic matter (DOM) as humic substances (HS) can cause significant inhibition even at relatively low concentrations of 0.165 g/L fulvic acid. However, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis suggested that xylan altered the crystal structure of both precipitates and had caused the formation of smaller sized struvite crystals with slightly rougher surfaces This could be due to xylan molecules adhering on the surface of the crystal potentially blocking active sites and limit further crystal growth. Smaller particle sizes will have negative practical impact because of poorer settleability.