• Title/Summary/Keyword: Humic Acid

Search Result 357, Processing Time 0.025 seconds

DESTRUCTION OF HUMIC MATTERS AND AMMONIA IN THE LANDFILL LEACHATE BY SUPERCRITICAL WATER OXIDATION

  • Kim, Y.K.;Ahn, J.S.;Leung, W.
    • Environmental Engineering Research
    • /
    • v.11 no.6
    • /
    • pp.311-317
    • /
    • 2006
  • Feasibility of destroying synthetic and actual leachate containing humic acids and ammonia compounds by supercritical water oxidation (SCWO) was evaluated. In this study, destruction efficiencies of humic acids and ammonia respectively were investigated at various reaction temperatures and residence times under pressure a supercritical pressure (280 atm). To lower reaction temperature, chemical oxidants were used. The experiment was carried out in a cylindrical batch reactor made of Hastelloy C-276 that can withstand high temperature and pressure. Concentrations of humic acids and ammonia were measured using a $COD_{Cr}$ method and an ammonia selective electrode, respectively. The optimal destructive condition of humic acids in the presence of stoichiometric oxygen(air) was 3 min at $380^{\circ}C$, but the temperature could be lowered to subcritical region ($360^{\circ}C$) along with $H_2O_2$ as an oxidant. For ammonia, the optimal destructive condition with air was 5 min at $660^{\circ}C$, but it was possible to operate the process for 3 minutes at $550^{\circ}C$ or 2 min at $600^{\circ}C$ along with $H_2O_2$ as an oxidant. At 2 min and $550^{\circ}C$ along with $H_2O_2$ as an oxidant, humic and ammonia compounds in the actual leachate were easily destructed and the effluent quality met the Korea Standard Leachate Quality.

Foliar application of humic acid or a mixture of catechol and vanillic acid enhanced growth and productivity of alfalfa

  • Khaleda, Laila;Kim, Min Gab;Jeon, Jong-Rok;Cha, Joon-Yung;Kim, Woe-Yeon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.3
    • /
    • pp.248-253
    • /
    • 2017
  • Humic acid (HA) is known to consist of various kinds of polymeric organics, their detailed structures can vary depend on sample sources such as organic manure, composts, peat, and lignite brown coal, and largely exists in grassland soils. HA possesses diverse positive effects that not only increase plant growth but also improve soil fertility. Recently, we have manufactured a co-polymeric product of catechol and vanillic acid (CAVA) synthesized artificially, and found that CAVA as a HA mimic increases seed germination and salt tolerance in Arabidopsis. In this study, we examined whether HA or CAVA affects to seedling growth in alfalfa. Foliar application of HA or CAVA increased alfalfa seedling growth including aerial and in root parts. HA or CAVA dramatically enhanced size of leaf and root, whereas HA significantly displayed higher bioactivity than CAVA. Taken together, CAVA acts like as a HA mimic in alfalfa that could apply as an alternation supplement to enhance plant growth and productivity.

Effects of dietary humic acid and enzymes on meat quality and fatty acid profiles of broiler chickens fed canola-based diets

  • Disetlhe, Amogelang R.P.;Marume, Upenyu;Mlambo, Victor;Hugo, Arno
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.5
    • /
    • pp.711-720
    • /
    • 2019
  • Objective: This study was conducted to assess the effect of potassium humate and enzymes (Xylanase+Amylase+Protease) inclusion in diets on carcass characteristics, meat quality and fatty acid profiles of broilers fed canola-based diets. Methods: Two hundred and twenty broilers randomly allotted to 5 dietary treatments: the control (commercial broiler diet); CM (17.5% canola meal inclusion); CMEnz (17.5% CM inclusion+0.3 g/kg Axtra XAP); CMPh (17.5% CM inclusion+1.5% Potassium Humate, PH); and CMEnzPh (17.5% CM inclusion+1.5% PH+0.3 g/kg Axtra XAP) were slaughtered at day 42 for assessment of carcass and meat quality parameters. Results: Diet had no effect on carcass traits apart from breast muscle weight and breast muscle index. The highest breast muscle weight was observed in broilers fed CMEnz ($487.6{\pm}17.5g$) followed by those fed the control diet ($474.37{\pm}17.5g$). Diet also had no significant dietary effect on pH, temperature, drip loss and shear force values of the breast muscle. However, diet significantly affected meat colour and water-holding capacity. Broilers in the control and CMPh groups ($52.94{\pm}0.67$ and $52.91{\pm}0.67$) had the highest (p<0.05) values for lightness ($L^*$), whilst those fed CMEnzPh had the lowest value ($47.94{\pm}0.67$). In contrast, CM group had the lowest (p<0.05) value for redness ($a^*$) with CMEnzPh group having the highest values. The proportion of polyunsaturated fatty acids (PUFAs), n-6 and n-3 fatty acids and the PUFA/saturated fatty acid ratio were increased in CM-based diets containing enzymes and humic acid. Conclusion: It can, therefore, be concluded that CM can be included in broiler diets in the presence of enzymes and humic acid with positive effects on meat quality and important fatty acids that are beneficial to the health of consumers.

A study on the BAC pilot plant in the Duk-san water works (덕산(德山) 정수장(淨水場)에서의 BAC Pilot plant에 관한 연구(硏究))

  • Lee, Sang-Bong;Kim, Dong-Youn;Lim, Jung-A;Lee, Won-Gwon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.9 no.2
    • /
    • pp.97-107
    • /
    • 1995
  • Today a conventional water treatment system has many problems. The ozone/GAC process, sometimes termed Biological Activated Carbon(BAC), appeared to be effective for the removal of soluble organic matters in the drinking water. The water quality of Nak-dong river in Pusan, generally shows BDOC 30-40% and NBDOC 60-70%. The pilot plant installed at the Duk-san water works that was been largest treatability(1,650,000ton/day) in Pusan. A experimental water in the pilot plant made use of the water after sand-filteration. Following results are drawn from this study. Initial adsorption velocity($DOC/DOC_o/T$) in the pure adsorption of GAG had a 0.0225, it's velocity changed to 0.006 after ozone added and the optimum ozone dose ranged of $1.4-2.0mgO_3/L$. A experimental water in the pilot plant composed with humic material(78%). Humic material composed with humic acid(20%) and fulvic acid(56%), and it's rate changed to 18 and 50% respectively after ozone added. DOC constantly decreased in the EBCTs and removal efficieny in the 15min of EBCT was 45-50%. It showed the largest removal rate of BDOC in the EBCT 5 and among the season, characteristics of removal varied. The HPC distributed over $10^6-10^7CFU/cm^3$ in the bed depth and among the season, distribution of HPC were differential.

  • PDF

Speciation of Arsenic from Soil Organic Matter in Abandoned Gold and Silver Mines, Korea

  • Ko, Il-Won;Kim, Kyoung-Woong;Hur, Hor-Gil
    • Journal of Applied Biological Chemistry
    • /
    • v.51 no.1
    • /
    • pp.36-44
    • /
    • 2008
  • Organic forms of arsenic (As) were determined through fractionation procedure of soil organic matter (SOM) in soil, sediments and mine tailing samples from the Myungbong, Dongil, and Okdong mining areas of southern Korea. An alkaline extraction method was applied to soil samples followed by the fractionation procedures of SOM by the DAX-8 and XAD-4 resin adsorption method. Major fraction of organic As species (42% to 98%) was found in acid-soluble fraction, whereas minor fraction (0.1 % to 67.8%) was present in the humic-associated As. In acid-soluble fractions, the transphillic- and hydrophilic-associated As were dominant in addition to As binding with humic and fulvic SOM. Arsenic binding was the strongest between pH 6 to 8 and reduced to about 70% at both low and high pH regions. The amount of both transphillic and hydrophillic associated As was less changed than humic and fulvic-associated As, in both low and high pH regions. This apparently indicates that As has stronger affinity towards hydrophillic rather than hydrophobic organics. From the experimental observation of As-binding SOM in natural soil, the ligand exchange model may be a feasible explanation of transphillic and hydrophillic affinity of As.

Growth Response to Acid Rain, Mg Deficiency and Al Surplus, and Amelioration of Al Toxicity by Humic Substances in Pitch Pine Seedlings

  • Joon-Ho Kim
    • Journal of Plant Biology
    • /
    • v.37 no.3
    • /
    • pp.301-308
    • /
    • 1994
  • The individual and combined effects of acidic rain, Mg deficiency (-Mg) and Al surplus (+Al) on the growth of shoots and roots of pitch pine seedlings and the effect of humic substances (Lit) on Al toxicity were investigated. The growth of height and dry matter were not significantly less for pitch pine seedlings sprayed with simulated acid rain (SAR) of pH 3.5 than for those sprayed with SAR of pH 5.6. But treatments of Al and +Al-Mg in soil solution reduced the growth of seedlings in terms of height of shoots, and dry matter of shoots or roots. Effect of Mg deficiency on the growth of seedlings was apparent only when Al was treated simutaneously. The growth of seedlings, regardless of rain pH, decreased in the following order: control=-Mg>Lit+Al>+Al>+Al-Mg. Treatments of Al and +Al-Mg in soil solution reduced the total length of secondary and teritary roots of seedlings regardless of rain pH, and decreased in the following order: the primary root

  • PDF

Humic Substances Suppresses the Proliferation of TC-1 Cells, the Lung Cancer Cell

  • Eun Ju Yang;Jeong Hyun Chang
    • Biomedical Science Letters
    • /
    • v.29 no.4
    • /
    • pp.280-286
    • /
    • 2023
  • In humic substances, fulvic acid (FA) is a subclass of diverse compounds known as humic substances, which are by-products of organic degradation from microorganisms. FA can suppress the proliferation of tumor cells. Despite numerous studies, the exact mechanism for the various effects of FA is not clearly understood. Based on results demonstrating anti-proliferation effects on human cancer, we investigated whether FA has similar effects on lung cancer in this study. Firstly, the anti-cancer effect of FA in pulmonary epithelial tumor cell lines (TC-1 cells) was examined by confirming its inhibitory effect on the cell proliferation of TC-1 cells. TC-1 cell proliferation was reduced by FA on a dose-dependent and time-dependent manner. After 24 hours of FA treatment, cell morphological changes such as cell volume decrease, non-adherence and increased number of apoptotic cells were clearly observed. In addition, FA induced a DNA ladder pattern by increased of DNA fragments in TC-1 cells. In the intracellular regulatory pathway by FA, we confirmed that FA induced the reduction of the anti-apoptotic protein, Bcl-2 protein levels. These results indicate that FA has anticancer effect by inducing intracellular apoptotic pathway. Further research on the mechanism of anticancer effects will be basic data for the development of potential anticancer drugs.

Changes in Spectroscopic Characteristics of Bark and Piggery Manure By-Product Composts During the Composting (수피${\cdot}$돈분 부산물 비료의 부숙단계별 분광학적 특성 변화)

  • Yang, Jae-E;Park, Chang-Jin;Shin, Myung-Kyo;Park, Yong-Ha;Choi, Moon-Heon;Kim, Jeong-Gyu;Kim, Jeong-Je
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.4
    • /
    • pp.378-383
    • /
    • 1999
  • Changes of the spectroscopic characteristics of the organic matter fractions and circular filter paper chromatograph were assessed for the bark and piggery manure composts during the composting. as an approach to base the criteria of the compost maturity evaluation. Contents of humic acid-C (HA-C) and fulvic acid-C (FA-C) in both bark and piggery manure composts were decreased as the composting got closer to maturity, but the ratios of HA-C/FA-C were increased. During the composting. ${\Delta}log$ K values were decreased, but RF values were increased. Humic acid of the mature bark compost after 120 days of composting was A-type, as compared to Rp-type for the raw bark and B-type for the immature compost. However. humic acid of the mature piggery manure composts after 40 days of composting was B-type, indicating the humification of the organic matter fractions continued at this stage. Circular filter paper chromatograph of the mature bark compost exhibited the regular sawteeth pattern at the edge, but that of the mature piggery manure showed an irregular sawteeth pattern. Results demonstrated that spectroscopic characteristics and circular filter paper chromatograph of the organic by-product composts might be employed for the compost stability assessment.

  • PDF

Influence of Humic or Fulvic Acid on Phytotoxicity of Bentazone (Bentazone의 약해(藥害)에 미치는 부식산(腐植酸) 및 훌브산(酸)의 영향(影響))

  • Han, Dae-Sung;Yang, Jae-E;Shin, Yong-Keon
    • Korean Journal of Environmental Agriculture
    • /
    • v.12 no.2
    • /
    • pp.162-168
    • /
    • 1993
  • This research was conducted to assess the influence of humic or fulvic acid on Bentazone phytotoxicity using a bioassay with hydroponically grown cabbage (Brassica campestris subsp. napus var. pekinensis Makino). Concentrations of Bentazone in the water culture media were ranged from 0 to 32 ${\mu}M $ and those of the organic ligands were 1.0mM as a soluble carbon. Media were prepared in a complete factorial combination with pHs of 4.5, 6.5 and 8.5. The phytotoxicity indices on growth rate and dry weight decrement were employed to evaluate the effects of organic ligands on the Bentazone phytotoxicity. Humic or fulvic acid without Bentazone treatment enhanced the growth of cabbage and this effect was evident at low pH of 4.5. Bentazone led to chlorosis and necrosis on cabbage leaves resulting in the decreases of dry and fresh weights and growth rate. This phytotoxic effect was increased with Bentazone concentration and evident at low pH. At pH 4.5, dry weight was decreased about 63% with 8${\mu}$M of Bentazone treatment. Effective concentration of Bentazone causing 50% decreases in fresh weight as compared to the control was estimated to be 21${\mu}$M. Presence of organic ligand reduced the phytotoxicity of Bentazone to cabbage significantly by increasing yields and growth rates as compared to the treatment of Bentazone alone. At pH 4.5, fulvic acid reduced phytotoxicity of Bentazone upto 46%, and this efficiency of fulvic acid was better than that of humic acid under the same condition.

  • PDF