• Title/Summary/Keyword: Humans and animals

Search Result 642, Processing Time 0.021 seconds

Evaluation of antibacterial and therapeutic effects of egg-white lysozyme against Salmonella Typhimurium in ICR mice infected with Salmonella Typhimurium (난백 유래 라이소자임의 마우스 살모넬라증에 대한 항균 및 치료 효과)

  • Kim, Hee-Gyu;Hwang, Jae-Seung;Jae, Woo-Young;Son, Song-Ee;Lee, Hu-Jang
    • Korean Journal of Veterinary Research
    • /
    • v.56 no.2
    • /
    • pp.103-108
    • /
    • 2016
  • Salmonellosis is a major bacterial zoonosis that causes self-limited enteritis in animals and foodborne disease and typhoid fever in humans. Recently, multi-drug-resistant strains of Salmonella spp. have increased and caused more serious problems in public health. The present study investigated the antibacterial effects of egg-white lysozyme (EWL) against Salmonella (S.) Typhimurium and the therapeutic effects of EWL for murine salmonellosis. Evaluation of the antibacterial effects of EWL against S. Typhimurium revealed a minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of EWL of 6.25 and $300{\mu}g/mL$, respectively. In the bacterial growth inhibition test, EWL at 300 (p < 0.05) and $600{\mu}g/mL$ (p < 0.01) significantly inhibited the growth of S. Typhimurium at 4 h post-incubation. EWL administration at MIC (LYS-1), MBC (LYS-2) and $2{\times}MBC$ (LYS-3) for 14 days resulted in mortality of mice infected with S. Typhimurium of 70, 40 and 10%, respectively, while that of control mice (CON) was 90%. Counts of S. Typhimurium in murine spleens were significantly lower in LYS-2 and LYS-3 than CON (p < 0.05). The results of this study indicate that EWL has the potential for treatment of ICR mice infected with S. Typhimurium.

Biodynamic understanding of mercury accumulation in marine and freshwater fish

  • Wang, Wen-Xiong
    • Advances in environmental research
    • /
    • v.1 no.1
    • /
    • pp.15-35
    • /
    • 2012
  • Mercury (Hg) is a global environmental pollutant that has been the cause of many public concerns. One particular concern about Hg in aquatic systems is its trophic transfer and biomagnification in food chains. For example, the Hg concentration increases with the increase of food chain level. Fish at the top of food chain can accumulate high concentrations of Hg (especially the toxic form, methylmercury, MeHg), which is then transferred to humans through seafood consumption. Various biological and physiochemical conditions can significantly affect the bioaccumulation of Hg-including both its inorganic (Hg(II)) and organic (MeHg) forms-in fish. There have been numerous measurements of Hg concentrations in marine and freshwater fish worldwide. Many of these studies have attempted to identify the processes leading to variations of Hg concentrations in fish species from different habitats. The development of a biokinetic model over the past decade has helped improve our understanding of the mechanisms underlying the bioaccumulation processes of Hg in aquatic animals. In this review, I will discuss how the biokinetic modeling approach can be used to reveal the interesting biodynamics of Hg in fish, such as the trophic transfer and exposure route of Hg(II) and MeHg, as well as growth enrichment (the increases in Hg concentration with fish size) and biomass dilution (the decreases in Hg concentration with increasing phytoplankton biomass). I will also discuss the relevance of studying the subcellular fates of Hg to predict the Hg bioaccessibility and detoxification in fish. Future challenges will be to understand the inter- and intra-species differences in Hg accumulation and the management/mitigation of Hg pollution in both marine and freshwater fish based on our knowledge of Hg biodynamics.

Evolution and Breeding of Members of Pooideae Subfamily: Focusing on Upland Cereal Crops (포아풀아과(Pooideae subfamily)의 진화와 육종: 맥류 중심의 고찰)

  • Sung, Yeon Jun;Oh, Hee Won;Kang, Yuna;Kim, Chang soo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.3
    • /
    • pp.220-239
    • /
    • 2021
  • Grasses (Poaceae) belong to the biggest plant family among angiosperms and it cover around 20% of the earth's surface. The members of this family are mostly utilized as food resources by humans and animals but they are also valuable in terms of evolution and ecology. The member of the subfamily Pooideae represents, temperate grasses, and includes a number of economically important crops and belongs to the clade BOP (including the subfamilies Bambooideae, Oryzeae, and Pooideae). This subfamily is the largest among all grass families. The special features of this subfamily are cold acclimation and vernalization. The members of Pooideae subfamily with the aforementioned special features are thought to have evolved in the Cenozoic era when the temperature on earth started to cool down, which triggered the diversification of this subfamily through adaptation to cold weather. The agricultural origin of wheat, barley, oat, and rye is attributed to fertile crescent and thereafter they were domesticated through Neolithic evolution. The history of domestication of each Pooideae crop is distinct and is based on their purpose. Recently, breeding of these crops is performed differently due to the development of new technologies such as genomics and genome editing. This review article summarizes the evolutionary history of the members of the subfamily Pooideae and use of pre-existing information for future breeding efforts.

Effectiveness of calcium hypochlorite, quaternary ammonium compounds, and sodium hypochlorite in eliminating vegetative cells and spores of Bacillus anthracis surrogate

  • Yim, Jin-Hyeok;Song, Kwang-Young;Kim, Hyunsook;Bae, Dongryeoul;Chon, Jung-Whan;Seo, Kun-Ho
    • Journal of Veterinary Science
    • /
    • v.22 no.1
    • /
    • pp.11.1-11.7
    • /
    • 2021
  • Background: The spore-forming bacterium Bacillus anthracis causes anthrax, an often-fatal infection in animals. Therefore, a rapid and reliable strategy to decontaminate areas, humans, and livestock from B. anthracis is very critical. Objectives: The aim of this study was performed to evaluate the efficacy of sodium hypochlorite, calcium hypochlorite, and quaternary ammonium compound (QAC) sanitizers, which are commonly used in the food industry, to inhibit spores and vegetative cells of B. anthracis surrogate. Methods: We evaluated the efficacy of sodium hypochlorite, calcium hypochlorite, and a QAC in inhibiting vegetative cells and spores of a B. anthracis surrogate. We treated a 0.1-mL vegetative cell culture or spore solution with 10 mL sanitizer. The samples were serially diluted and cultured. Results: We found that 50 ppm sodium hypochlorite (pH 7), 1 ppm calcium hypochlorite, and 1 ppm QAC completely eliminated the cells in vegetative state. Exposure to 3,000 ppm sodium hypochlorite (pH 7) and 300 ppm calcium hypochlorite significantly eliminated the bacterial spores; however, 50,000 ppm QAC could not eliminate all spores. Conclusions: Calcium hypochlorite and QAC showed better performance than sodium hypochlorite in completely eliminating vegetative cells of B. anthracis surrogate. QAC was ineffective against spores of the B. anthracis surrogate. Among the three commercial disinfectants tested, calcium hypochlorite most effectively eliminated both B. anthracis vegetative cells and spores.

Roles of Mesenchymal Stem Cells in Tissue Regeneration and Immunomodulation

  • Ayala-Cuellar, Ana Patricia;Kang, Ji-Houn;Jeung, Eui-Bae;Choi, Kyung-Chul
    • Biomolecules & Therapeutics
    • /
    • v.27 no.1
    • /
    • pp.25-33
    • /
    • 2019
  • Mesenchymal stem cells are classified as multipotent stem cells, due to their capability to transdifferentiate into various lineages that develop from mesoderm. Their popular appeal as cell-based therapy was initially based on the idea of their ability to restore tissue because of their differentiation potential in vitro; however, the lack of evidence of their differentiation to target cells in vivo led researchers to focus on their secreted trophic factors and their role as potential powerhouses on regulation of factors under different immunological environments and recover homeostasis. To date there are more than 800 clinical trials on humans related to MSCs as therapy, not to mention that in animals is actively being applied as therapeutic resource, though it has not been officially approved as one. But just as how results from clinical trials are important, so is to reveal the biological mechanisms involved on how these cells exert their healing properties to further enhance the application of MSCs on potential patients. In this review, we describe characteristics of MSCs, evaluate their benefits as tissue regenerative therapy and combination therapy, as well as their immunological properties, activation of MSCs that dictate their secreted factors, interactions with other immune cells, such as T cells and possible mechanisms and pathways involved in these interactions.

Molecular Detection and Genetic Diversity of Blastocystis in Korean Dogs

  • Suh, Sangsu;Lee, Haeseung;Seo, Min-Goo;Kim, Kyoo-Tae;Eo, Kyung-Yeon;Kwon, Young-Sam;Park, SangJoon;Kwon, Oh-Deog;Kim, Tae-Hwan;Kwak, Dongmi
    • Parasites, Hosts and Diseases
    • /
    • v.60 no.4
    • /
    • pp.289-293
    • /
    • 2022
  • Blastocystis is a genus of unicellular heterokont parasites belonging to a group of organisms known as Stramenopiles, which includes algae, diatoms, and water molds. Blastocystis includes several species that habitat in the gastrointestinal tracts of organisms as diverse as humans, farm animals, birds, rodents, reptiles, amphibians, fish, and cockroaches. It is important to public health and distributed globally, but its prevalence in dogs in Korea has not been reported to date. Here, we collected 787 canine fecal samples and assessed Blastocystis infection by age, sex, region, season, and diarrhea symptoms. We determined Blastocystis subtypes using phylogenetic analyses based on 18S rRNA gene sequences. We identified, 10 Blastocystis positive samples (1.3%). A higher proportion of infected dogs was asymptomatic; however, infection rates did not significantly differ according to region, age, sex, and season. Phylogenetic analysis showed that the Blastocystis sp. identified belonged to 4 subtypes (STs), ST1, ST5, ST10, and ST14, thus revealed the genetic diversity of Blastocystis sp. in dogs Korean. This is first report on the presence of Blastocystis sp. in dogs Korean. This study revealed a lower infection rate than expected and differed from previous studies in STs. Further studies are warranted to observe the national infection status of Blastocystis in dogs and the genetic characteristics of this genus.

Profiling Bartonella infection and its associated risk factors in shelter cats in Malaysia

  • Nurul Najwa Ainaa Alias;Sharina Omar;Nur Indah Ahmad;Malaika Watanabe;Sun Tee Tay;Nor Azlina Aziz;Farina Mustaffa-Kamal
    • Journal of Veterinary Science
    • /
    • v.24 no.3
    • /
    • pp.38.1-38.12
    • /
    • 2023
  • Background: Poor disease management and irregular vector control could predispose sheltered animals to disease such as feline Bartonella infection, a vector-borne zoonotic disease primarily caused by Bartonella henselae. Objectives: This study investigated the status of Bartonella infection in cats from eight (n = 8) shelters by molecular and serological approaches, profiling the CD4:CD8 ratio and the risk factors associated with Bartonella infection in shelter cats. Methods: Bartonella deoxyribonucleic acid (DNA) was detected through polymerase chain reaction (PCR) targeting 16S-23S rRNA internal transcribed spacer gene, followed by DNA sequencing. Bartonella IgM and IgG antibody titre, CD4 and CD8 profiles were detected using indirect immunofluorescence assay and flow cytometric analysis, respectively. Results: B. henselae was detected through PCR and sequencing in 1.0% (1/101) oral swab and 2.0% (1/50) cat fleas, while another 3/50 cat fleas carried B. clarridgeiae. Only 18/101 cats were seronegative against B. henselae, whereas 30.7% (31/101) cats were positive for both IgM and IgG, 8% (18/101) cats had IgM, and 33.7% (34/101) cats had IgG antibody only. None of the eight shelters sampled had Bartonella antibody-free cats. Although abnormal CD4:CD8 ratio was observed in 48/83 seropositive cats, flea infestation was the only significant risk factor observed in this study. Conclusions: The present study provides the first comparison on the Bartonella spp. antigen, antibody status and CD4:CD8 ratio among shelter cats. The high B. henselae seropositivity among shelter cats presumably due to significant flea infestation triggers an alarm of whether the infection could go undetectable and its potential transmission to humans.

Effects of Wax Gourd Extracts on Adipocyte Differentiation and Uncoupling Protein Genes(Ucps) Expression in 3T3-Ll Preadipocytes

  • Kang, Keun-Jee;Kwon, So-Young
    • Nutritional Sciences
    • /
    • v.6 no.3
    • /
    • pp.148-154
    • /
    • 2003
  • Although various raw plant materials have been demonstrated to exert anti-obesity effects to a greater or lesser extent in both humans and animals when they are used to supplement the diet, it has not been shown extensively that they influence adipocyte cell differentiation involving lipid metabolic gene expressions. Using a well-established 3T3-L1 preadipocyte differentiation system, we decided to look into molecular and cellular event occurring during adipocyte differentiation when raw plant materials aye included in the process, in an effort to demonstrate the potential use of a screening system to define the functions of traditionally well-known materials. To these ends, the effects of ethanol (EtOH) or EtOH/distilled water (DW) extracts of Wax Gourd were examined using cytochemical and molecular analyses to determine whether components of the extracts modulate adipocyte differentiation of 3T3-Ll preadipocytes in vitro. The cytochemical results demonstrated that EtOH or EtOH/DW extracts did not affect lipid accumulation and cell proliferation, although the degree of lipid accumulation was influenced slightly depending on the extract. EtOH extract was highly effective in apoptotic induction during differentiation of 3T3-Ll preadipocytes (p<0.05). Reverse transcription-polymerase chain reaction (RT-PCR) analysis of lipoprotein lipase (LPL), Uncoupling protein (Ucp) 2, 3 and 4 also showed that while LPL expression was not influenced, Ucp2, 3 and 4 were up regulated in the EtOH extract-treated group and down regulated in the EtOH/DW extract-treated group. These changes in gene expressions suggest that the components in different fractions of Wax Gourd extracts may modulate lipid metabolism by either direct or indirect action. Taking these results together, it was concluded that molecular and cellular analyses of adipocyte differentiation involving lipid metabolic genes should facilitate understanding of cellular events occurring during adipocyte differentiation. Furthermore, the experimental scheme and analytical methods used in this study should provide a screening system for the functional study of raw plant materials in obesity research.

Differential characterization of myogenic satellite cells with linolenic and retinoic acid in the presence of thiazolidinediones from prepubertal Korean black goats

  • Subi, S.;Lee, S.J.;Shiwani, S.;Singh, N.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.3
    • /
    • pp.439-448
    • /
    • 2018
  • Objective: Myogenic satellite cells were isolated from semitendinosus muscle of prepubertal Korean black goat to observe the differential effect of linolenic and retinoic acid in thepresence of thiazolidinediones (TZD) and also to observe the production insulin sensitive preadipocyte. Methods: Cells were characterized for their stemness with cluster of differentiation 34 (CD34), CD13, CD106, CD44, Vimentin surface markers using flow cytometry. Cells characterized themselves as possessing significant (p<0.05) levels of CD13, CD34, CD106, Vimentin revealing their stemness potential. Goat myogenic satellite cells also exhibited CD44, indicating that they possessed a % of stemness factors of adipose lineage apart from their inherent stemness of paxillin factors 3/7. Results: Cells during proliferation stayed absolutely and firmly within the myogenic fate without any external cues and continued to show a significant (p<0.05) fusion index % to express myogenic differentiation, myosin heavy chain, and smooth muscle actin in 2% horse serum. However, confluent myogenic satellite cells were the ones easily turning into adipogenic lineage. Intriguingly, upregulation in adipose specific genetic markers such as peroxisome proliferation-activated receptor ${\gamma}$, adiponectin, lipoprotein lipase, and CCAAT/enhancer binding protein ${\alpha}$ were observed and confirmed in all given treatments. However, the amount of adipogenesis was found to be statistically significant (p<0.01) with linolenic acid as compared to retinoic acid in combination with TZD's. Conclusion: Retinoic acid was found to produce smaller preadipocytes which have been assumed to have insulin sensitization and hence retinoic acid could be used as a potential agent to sensitize tissues to insulin in combination with TZD's to treat diabetic conditions in humans and animals in future.

Comparison of characteristics of long noncoding RNA in Hanwoo according to sex

  • Choi, Jae-Young;Won, KyeongHye;Son, Seungwoo;Shin, Donghyun;Oh, Jae-Don
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.5
    • /
    • pp.696-703
    • /
    • 2020
  • Objective: Cattle were some of the first animals domesticated by humans for the production of milk, meat, etc. Long noncoding RNA (lncRNA) is defined as longer than 200 bp in nonprotein coding transcripts. lncRNA is known to function in regulating gene expression and is currently being studied in a variety of livestock including cattle. The purpose of this study is to analyze the characteristics of lncRNA according to sex in Hanwoo cattle. Methods: This study was conducted using the skeletal muscles of 9 Hanwoo cattle include bulls, steers and cows. RNA was extracted from skeletal muscle of Hanwoo. Sequencing was conducted using Illumina HiSeq2000 and mapped to the Bovine Taurus genome. The expression levels of lncRNAs were measured by DEGseq and quantitative trait loci (QTL) data base was used to identify QTLs associated with lncRNA. The python script was used to match the nearby genes Results: In this study, the expression patterns of transcripts of bulls, steers and cows were identified. And we identified significantly differentially expressed lncRNAs in bulls, steers and cows. In addition, characteristics of lncRNA which express differentially in muscles according to the sex of Hanwoo were identified. As a result, we found differentially expressed lncRNAs according to sex were related to shear force and body weight. Conclusion: This study was classified and characterized lncRNA which differentially expressed by sex in Hanwoo cattle. We believe that the characterization of lncRNA by sex of Hanwoo will be helpful for future studies of the physiological mechanisms of Hanwoo cattle.