• 제목/요약/키워드: Humanoid Robot Design

검색결과 81건 처리시간 0.053초

Biped Walking of a Humanoid Robot for Argentina Tango

  • Ahn, Doo-Sung
    • 드라이브 ㆍ 컨트롤
    • /
    • 제13권4호
    • /
    • pp.52-58
    • /
    • 2016
  • The mechanical design for biped walking of a humanoid robot doing the Argentina Tango is presented in this paper. Biped walking has long been studied in the area of robotic locomotion. The aim of this paper is to implement an Argentina Tango dancer-like walking motion with a humanoid robot by using a trajectory generation scheme. To that end, this paper uses blending polynominals whose parameters are determined based on PSO (Particle Swarm Optimization) according to conditions that make the most of the Argentina Tango's characteristics. For the stability of biped walking, the ZMP (Zero Moment Point) control method is used. The feasibility of the proposed scheme is evaluated by simulating biped walking with the 3D Simscape robot model. The simulation results show the validity and effectiveness of the proposed method.

휴머노이드 로봇의 자세 제어에 관한 연구 (A Study on the Posture Control of a Humanoid Robot)

  • 김진걸;이보희;공정식
    • 제어로봇시스템학회논문지
    • /
    • 제11권1호
    • /
    • pp.77-83
    • /
    • 2005
  • This paper deals with determination of motions of a humanoid robot using genetic algorithm. A humanoid robot has some problems of the structural instability basically. So, we have to consider the stable walking gait in gait planning. Besides, it is important to make the smoothly optimal gait for saving the electric power. A mobile robot has a battery to move autonomously. But a humanoid robot needs more electric power in order to drive many joints. So, if movements of walking joints don't maintain optimally, it is difficult for a robot to have working time for a long time. Also, if a gait trajectory doesn't have optimal state, the expected life span of joints tends to be decreased. To solve these problems, the genetic algorithm is employed to guarantee the optimal gait trajectory. The fitness functions in a genetic algorithm are introduced to find out optimal trajectory, which enables the robot to have the less reduced jerk of joints and get smooth movement. With these all process accomplished by a PC-based program, the optimal solution could be obtained from the simulation. In addition, we discuss the design consideration for the joint motion and distributed computation of the humanoid, ISHURO, and suggest its result such as the structure of the network and a disturbance observer.

과학관에서의 대중 시연을 통한 인간크기 이족보행 휴머노이드 로봇의 평가 연구 (Evaluation Study of a Human-sized Bipedal Humanoid Robot Through a Public Demonstration in a Science Museum)

  • 안태범;강이석
    • 제어로봇시스템학회논문지
    • /
    • 제21권9호
    • /
    • pp.849-857
    • /
    • 2015
  • Although human-sized bipedal humanoid robots have been developed as the ideal form of human-friendly robots, studies of humanoid robots from the user perspective and of actual interaction between humanoid robots and the public in daily environments are few. This paper presents a long-term public demonstration that encouraged interaction between a humanoid robot and unspecified individuals. We have collected a significant amount of subjective evaluation data from the public by performing a storytelling demonstration that enhanced people's empathy towards the robot. The evaluation model consists of the robot's human friendliness, which involves its impression on humans, interaction with humans, and imitation of human motions and the robot's human appearance which involves gender, age, height, and body type. This study shows that there is no significant difference in human-friendliness between gender groups (male and female), while there is a significant difference between age groups (children and adults). In human appearance, it appears that there is no significant difference between either gender groups or age groups, except for the case of the robot's height.

A Study on The Implementation of Stable and High-speed Humanoid Robot (ICCAS 2004)

  • Kim, Seung-Woo;Jung, Yong-Rae;Jang, Kyung-Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1440-1443
    • /
    • 2004
  • Most previous robots had used the wheels as means for movement. These structures were relatively simple and easy to control and this is why the method had been used until currently. However, there are many realistic problems to move from one place to another in human life, for instance, steps and edges. So we need to develop the two-legged walking humanoid robot. The 2-legged walking Robot system has been vigorously developed in so many corporations and academic circles of several countries. However, 2-legged walking Robot has been mostly studied in view of the static walk. We design a stable humanoid Robot which can walk in high-speed through the research of the dynamic walk in this paper. Especially, worldwide companies have been interested in developing humanoid robots for a long time to solve the before mentioned problems so that they can become more familiar with the human form. The most important thing, for the novel two-legged walk, is to create a stable and fast walking in two-legged robots. For realization of this movement, an optimal mechanical design of 12 DOFS, a distributed control and a parallel processing control are implemented in this paper. This paper proves that high speed and stable walking can be achieved, through experiments.

  • PDF

리프팅 작업을 위한 인간형 로봇 팔의 어깨와 팔꿈치 관절 토오크 분석 (Analysis on Torques of Shoulder and Elbow Joints of Humanoid Robot Arm for Lifting Tasks)

  • 김병호
    • 한국지능시스템학회논문지
    • /
    • 제25권3호
    • /
    • pp.223-228
    • /
    • 2015
  • 본 논문에서는 어떤 물체를 들어 올려서 전달하는 인간의 작업을 대신 수행하기 위한 인간형 로봇 팔의 어깨 및 팔꿈치 관절의 토오크 특성을 분석하고자 한다. 이러한 목적을 달성하기 위하여 인간의 일상적인 물체의 리프팅 행동을 고려하고, 단순한 구조의 어깨와 팔꿈치 관절을 갖는 인간형 로봇 팔 모델을 사용하여 어떤 물체를 다양한 경로로 이송하는 시뮬레이션을 수행한다. 이러한 시뮬레이션을 통하여 인간형 로봇 팔을 이용한 물체의 이송 작업에 있어서 요구되는 어깨 및 팔꿈치 관절의 토오크 패턴 및 범위를 사전에 파악할 수 있음을 보인다. 결과적으로, 이러한 어깨 및 팔꿈치 관절의 토오크 분석은 효과적인 로봇 팔 메커니즘 설계에 유용하게 활용될 수 있다.

유전 알고리즘을 이용한 휴머노이드 로봇의 동작연구 (Motion Study for a Humanoid Robot Using Genetic Algorithm)

  • 공정식;이보희;김진걸
    • 한국정밀공학회지
    • /
    • 제23권7호
    • /
    • pp.84-92
    • /
    • 2006
  • This paper deals with determination of motions of a humanoid robot using genetic algorithm. A humanoid robot has some problems of the structural instability basically. So, we have to consider the stable walking gait in gait planning. Besides, it is important to make the smoothly optimal gait for saving the electric power. A mobile robot has battery to move autonomously. But a humanoid robot needs more electric power in order to drive many joints. So, if movements of walking joint don't maintain optimally, it is hard to sustain the battery power during the working period. Also, if a gait trajectory doesn't have optimal state, the expected lift span of joints tends to be decreased. Also, if a gait trajectory doesn't have optimal state, the expected lift span of joints tends to be decreased. To solve these problems, the genetic algorithm is employed to guarantee the optimal gait trajectory. The fitness functions in a genetic algorithm are introduced to find out optimal trajectory, which enables the robot to have the less reduced jerk of joints and get smooth movement. With these all process accomplished by PC-based program, the optimal solution could be obtained from the simulation. In addition, we discuss the design consideration fur the joint motion and distributed computation of tile humanoid, ISHURO, and suggest its result such as structure of the network and a disturbance observer.

아동형 휴머노이드 로봇의 설계 및 보행 (Design and Walking of Child-typed Humanoid Robot)

  • 이기남;유영재
    • 한국지능시스템학회논문지
    • /
    • 제25권3호
    • /
    • pp.248-253
    • /
    • 2015
  • 휴머노이드 로봇이 인간의 생활환경에 적응하여 미션을 수행하기 위해서는 최소 아동과 비슷한 키를 가져야 한다. 본 논문에서는 아동과 비슷한 키의 1m 이상 휴머노이드 로봇의 설계에 대하여 다루고 있다. 구체적으로는 휴머노이드 로봇의 기구학, 3차원 모델 설계, 메커니즘 개발, 그리고 서보모터와 소형 PC를 이용한 하드웨어 구조를 제시하였다. 이 과정을 통하여 1m 10cm, 무게 8.16kg의 아동형 휴머노이드 로봇 'CHARLES(Cognitive Humanoid Autonomous Robot with Learning and Evolutionary Systems)' 를 설계하고 제작하였다. 로봇의 보행을 위해 ZMP 기반 보행기법을 적용하고, 보행패턴 생성 알고리즘을 적용하였다. 그리고 보행 실험을 통하여 보행패턴 파리미터의 설정에 따른 보행패턴의 생성 및 변화를 분석하였다.

인간형 로봇의 안정성을 위한 백래쉬 보상기 구현 (Implementation of Backlash Compensator for Stability of a Humanoid Robot)

  • 정병재;공정식;김진걸;허욱열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.681-683
    • /
    • 2004
  • This paper describes the control of a geared DC motor having a backlash for implementation of a humanoid robot using disturbance observer. Critical problem of the humanoid robot is caused by the nonlinearity such as a backlash. To meet this problem, a control method using disturbance observer has been proposed. The disturbance observer is designed to estimate the effects of nonlinearities in the system, to make the nonlinear system behave linearly. To design the low-pass filter in the disturbance observer, cut-off frequency of the output should be found. The goal of this paper is the implementation of the proposed system, compensating the backlash effect. To accomplish the goat, PD control and disturbance observer are employed to the system with no load and full load. As a result, system stability can be guaranteed by compensating the effect of backlash. In addition, real experiment shows the proposed control methodology will satisfy the stable working of a humanoid type in the future.

  • PDF