• 제목/요약/키워드: Humanoid Motion

검색결과 137건 처리시간 0.029초

안정적인 보행을 위한 이족 휴머노이드 로봇에서의 서포트 벡터 머신 이용 (Use of Support Vector Machines in Biped Humanoid Robot for Stable Walking)

  • 김동원;박귀태
    • 제어로봇시스템학회논문지
    • /
    • 제12권4호
    • /
    • pp.315-319
    • /
    • 2006
  • Support vector machines in biped humanoid robot are presented in this paper. The trajectory of the ZMP in biped walking robot poses an important criterion for the balance of the walking robots but complex dynamics involved make robot control difficult. We are establishing empirical relationships based on the dynamic stability of motion using SVMs. SVMs and kernel method have become very popular method for learning from examples. We applied SVM to model the practical humanoid robot. Three kinds of kernels are employed also and each result has been compared. As a result, SVM based on kernel method have been found to work well. Especially SVM with RBF kernel function provides the best results. The simulation results show that the generated ZMP from the SVM can be improve the stability of the biped walking robot and it can be effectively used to model and control practical biped walking robot.

Biped Walking of a Humanoid Robot for Argentina Tango

  • Ahn, Doo-Sung
    • 드라이브 ㆍ 컨트롤
    • /
    • 제13권4호
    • /
    • pp.52-58
    • /
    • 2016
  • The mechanical design for biped walking of a humanoid robot doing the Argentina Tango is presented in this paper. Biped walking has long been studied in the area of robotic locomotion. The aim of this paper is to implement an Argentina Tango dancer-like walking motion with a humanoid robot by using a trajectory generation scheme. To that end, this paper uses blending polynominals whose parameters are determined based on PSO (Particle Swarm Optimization) according to conditions that make the most of the Argentina Tango's characteristics. For the stability of biped walking, the ZMP (Zero Moment Point) control method is used. The feasibility of the proposed scheme is evaluated by simulating biped walking with the 3D Simscape robot model. The simulation results show the validity and effectiveness of the proposed method.

지능형 표정로봇, 휴머노이드 ICHR (Intelligent Countenance Robot, Humanoid ICHR)

  • 변상준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.175-180
    • /
    • 2006
  • In this paper, we develope a type of humanoid robot which can express its emotion against human actions. To interact with human, the developed robot has several abilities to express its emotion, which are verbal communication with human through voice/image recognition, motion tracking, and facial expression using fourteen Servo Motors. The proposed humanoid robot system consists of a control board designed with AVR90S8535 to control servor motors, a framework equipped with fourteen server motors and two CCD cameras, a personal computer to monitor its operations. The results of this research illustrate that our intelligent emotional humanoid robot is very intuitive and friendly so human can interact with the robot very easily.

  • PDF

소형 휴머노이드 로븟 시스템 개발 (The Development of a Miniature Humanoid Robot System)

  • 성영휘;이수영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.43-43
    • /
    • 2000
  • In this paper, we introduce a case study of developing a miniature humanoid robot that has 16 degrees of freedom and is able to perform statically stable walking. The developed humanoid robot is 37cm tall and weighs 1,200g. RC servo motors are used as actuators. The robot can walk forward and turn to any direction on even surface. It equipped with a small digital camera, so it can transmit vision data to a remote host computer via wireless modem. The robot can be operated in two modes; One is a remote-controlled mode, in which the robot behaves according to the command given by a human operator through the user-interface program running on a remote host computer, the other is a stand-alone mode, in which the robot behaves autonomously according to the pre-programmed strategy. The user-interface program also contains a robot graphic simulator that is used to produce and verify the robot's gait motion. In our walking algorithm, the ankle joint is mainly used lot balancing the robot. The experimental results shows that the developed robot can perform statically stable walking on even surface.

  • PDF

휴먼 로봇의 원경조종용 마스터 암$^+$ 개발에 관한 연구 (Masterarm $^+$ Development for Teleoperation of a Humanoid Robot)

  • 김윤상;이장욱;이수용;김문상;이종원
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권6호
    • /
    • pp.283-294
    • /
    • 2001
  • In this paper, a masterarm for teleoperation of humanoid robot is presented. This masterarm is based human kinematics, which not only mimics human posture/motion completely, but also has wider work range. In addition, by using the distributed controller architecture and electric brake for force reflection, small size and lightweight of the device can be achieved. Some size and lightweight of the device can be achieved. Some important experiments integrated with the humanoid robot, CENTAUR developed by KIST(Korea Institute of Science and Technology), are conducted to evaluate the performance of the proposed masterarm.

  • PDF

이족 휴머노이드 로봇의 유연한 보행을 위한 학습기반 뉴로-퍼지시스템의 응용 (Use of Learning Based Neuro-fuzzy System for Flexible Walking of Biped Humanoid Robot)

  • 김동원;강태구;황상현;박귀태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.539-541
    • /
    • 2006
  • Biped locomotion is a popular research area in robotics due to the high adaptability of a walking robot in an unstructured environment. When attempting to automate the motion planning process for a biped walking robot, one of the main issues is assurance of dynamic stability of motion. This can be categorized into three general groups: body stability, body path stability, and gait stability. A zero moment point (ZMP), a point where the total forces and moments acting on the robot are zero, is usually employed as a basic component for dynamically stable motion. In this rarer, learning based neuro-fuzzy systems have been developed and applied to model ZMP trajectory of a biped walking robot. As a result, we can provide more improved insight into physical walking mechanisms.

  • PDF

Mechanism and Motion of New Biped Leg Machine

  • Lim, Hun-Ok;Ogura, Yu;Takanishi, Atsuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1922-1927
    • /
    • 2005
  • This paper describes the mechanism of a new biped machine capable of doing human-robot cooperation work. The biped machine, WABIAN-2 is made of two seven degrees of freedom (DOF) legs, a two DOF waist and no DOF trunk. Its leg system consists of two three DOF ankles, two one DOF knees and two three DOF hips to deal with various walk motions. Its height is about 1.2[m], and its weight is 40[kg]. It is designed with large movable range as a human. Also, a knee stretch walk pattern generation for the biped machine to perform natural walk like a human is discussed in this paper. Its leg motion is compensated by using the motion of its waist. Basic knee stretch walk experiments using WABIAN-2 are conducted on the plane, and the validity of its mechanism and walk pattern generator is verified.

  • PDF

Exoskeleton 모션 캡처 장치로 다관절 로봇의 원격제어를 하기 위한 FPGA 임베디드 제어기 설계 (Design of Embedded EPGA for Controlling Humanoid Robot Arms Using Exoskeleton Motion Capture System)

  • 이운규;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제13권1호
    • /
    • pp.33-38
    • /
    • 2007
  • In this paper, hardware implementation of interface and control between two robots, the master and the slave robot, are designed. The master robot is the motion capturing device that captures motions of the human operator who wears it. The slave robot is the corresponding humanoid robot arms. Captured motions from the master robot are transferred to the slave robot to follow after the master. All hardware designs such as PID controllers, communications between the master robot, encoder counters, and PWM generators are embedded on a single FPGA chip. Experimental studies are conducted to demonstrate the performance of the FPGA controller design.

Motion Teaching Method for Complex Robot Links Using Motor Current Sensing

  • Bang, Young-Bong;Lee, Won-Seok;Lee, Kyung-Min;Kim, In-Su;Paik, Kyu-Jin;Shin, Bu-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.113-118
    • /
    • 2005
  • Robots today have wider application fields than they ever have before. They need to work close to humans and fluid and compliable motions are expected of them. This requires redundant degrees of freedom for completing specific task. And conventional motion teaching method cannot be applied to redundant link structures. In this paper, the authors present a proficient, cost-effective and intuitive method for motion teaching. New software to apply this method to a humanoid is also presented. This new method utilizes current sensors to determine which joints to rotate. The experiment shown in this paper is a case of closed link where arms cannot move independently due to the restrictions in between the hands. After the input of several passing points of motion trajectory, the curve fitting is performed by the developed software. This software can insert new points, delete erroneous points and modify existing points. The developed motion teaching method is applied to the Kumdo robot, which is developed by the authors.

  • PDF

구조/구난 임무 수행을 위한 실험용 휴머노이드 로봇의 개발과 동역학 기반의 모션 최적화 (Development of an Experimental Humanoid Robot and Dynamics Based Motion Optimization for Rescue Missions)

  • 홍성일;이영우;박규현;이원석;심옥기;오준호
    • 제어로봇시스템학회논문지
    • /
    • 제21권8호
    • /
    • pp.753-757
    • /
    • 2015
  • This paper introduces an experimental rescue robot, HUBO T-100 and presents the optimal motion control method. The objective of the rescue robot is to extract patients or wounded soldiers in the battlefield and hazardous environments. Another mission is to dispose and transport an explosive ordnance to safe places. To execute these missions, the upper body of the rescue robot is humanoid in form to execute various kinds of tasks. The lower body features a hybrid tracked/legged design, which allows for a variety of mode of locomotion, depending on terrain conditions in order to increase traversability. The weight lifting motion is one of the most important task for performing rescue related missions because the robot must lift an object or impaired person lying on the ground for transferring. Here, dynamics based motion optimization is employed to minimize joint torques while maintaining stability simultaneously. Physical experiments with a real humanoid robot, HUBO T-100, are presented to verify the proposed method.