• Title/Summary/Keyword: Human-activity Recognition

Search Result 201, Processing Time 0.032 seconds

Recognition of the Importance of Imidazolidinone Motif for Cytotoxicity of 4-Phenyl-1-arylsulfonylimidazolidinones Using Thiadiazolidine-1, 1-Dioxide Analogs

  • Kim, Il-Whan;Jung, Sang-Hun
    • Archives of Pharmacal Research
    • /
    • v.25 no.4
    • /
    • pp.421-427
    • /
    • 2002
  • For probing the importance of planarity of imidazolidinone motif of 4-phenyl-1-(N-acylindoline-5-sulfonyl)imidazolidinones 1 for their cytotoxicity, 4-phenyl-1-(N-acylindoline-5-sulfonyl)[1,2,5]thiadiazolidine-1,1-dioxides 2 were prepared and their cytotoxicity were measured against human lung carcinoma (A549), human colon carcinoma (COLO205), human ovarian cancer (SK-OV-3), human leukemic cancer (K562), and murine colon adenocarcinoma (Colon26) cell lines in vitro. Although only carbonyl moiety of imidazolidinone ring was replaced with sulfonyl group, compounds 2 do not show any activity against all five cancer cell lines unlike 1. Therefore the planarity of imidazolidinone ring of 1 should be an important factor for their cytotoxic activity.

Agent's Activities based Intention Recognition Computing (에이전트 행동에 기반한 의도 인식 컴퓨팅)

  • Kim, Jin-Ok
    • Journal of Internet Computing and Services
    • /
    • v.13 no.2
    • /
    • pp.87-98
    • /
    • 2012
  • Understanding agent's intent is an essential component of the human-computer interaction of ubiquitous computing. Because correct inference of subject's intention in ubiquitous computing system helps particularly to understand situations that involve collaboration among multiple agents or detection of situations that can pose a particular activity. This paper, inspired by people have a mechanism for interpreting one another's actions and for inferring the intentions and goals that underlie action, proposes an approach that allows a computing system to quickly recognize the intent of agents based on experience data acquired through prior capabilities of activities recognition. To proceed intention recognition, proposed method uses formulations of Hidden Markov Models (HMM) to model a system's prior experience and agents' action change, then makes for system infer intents in advance before the agent's actions are finalized while taking the perspective of the agent whose intent should be recognized. Quantitative validation of experimental results, while presenting an accurate rate, an early detection rate and a correct duration rate with detecting the intent of several people performing various activities, shows that proposed research contributes to implement effective intent recognition system.

Abnormal Human Activity Recognition System Based on CNN For Elderly Home Care (노인 홈 케어를위한 CNN 기반의 비정상 인간 활동 인식 시스템)

  • Valavi, Arezoo;Lee, Hyo Jong
    • Annual Conference of KIPS
    • /
    • 2019.05a
    • /
    • pp.542-544
    • /
    • 2019
  • Changes in a person's health affect one's lifestyle and work activities. According to the World Health Organization (WHO), abnormal activity is growing faster in people aged 60 or more than any other age group in almost every country. This trend steadily continues and expected to increase further in the near future. Abnormal activity put these people at high risk of expected incidents since most of these people live alone. Human abnormal activity analysis is a challenging, useful and interesting problem among the researchers and its particularly crucial task in life and health care areas. In this paper, we discuss the problem of abnormal activities of old people lives alone at home. We propose Convolutional Neural Network (CNN) based model to detect the abnormal behaviors of elderlies by utilizing six simulated action data from daily life actions.

Activity Recognition based on Multi-modal Sensors using Dynamic Bayesian Networks (동적 베이지안 네트워크를 이용한 델티모달센서기반 사용자 행동인식)

  • Yang, Sung-Ihk;Hong, Jin-Hyuk;Cho, Sung-Bae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.1
    • /
    • pp.72-76
    • /
    • 2009
  • Recently, as the interest of ubiquitous computing has been increased there has been lots of research about recognizing human activities to provide services in this environment. Especially, in mobile environment, contrary to the conventional vision based recognition researches, lots of researches are sensor based recognition. In this paper we propose to recognize the user's activity with multi-modal sensors using hierarchical dynamic Bayesian networks. Dynamic Bayesian networks are trained by the OVR(One-Versus-Rest) strategy. The inferring part of this network uses less calculation cost by selecting the activity with the higher percentage of the result of a simpler Bayesian network. For the experiment, we used an accelerometer and a physiological sensor recognizing eight kinds of activities, and as a result of the experiment we gain 97.4% of accuracy recognizing the user's activity.

Improving Human Activity Recognition Model with Limited Labeled Data using Multitask Semi-Supervised Learning (제한된 라벨 데이터 상에서 다중-태스크 반 지도학습을 사용한 동작 인지 모델의 성능 향상)

  • Prabono, Aria Ghora;Yahya, Bernardo Nugroho;Lee, Seok-Lyong
    • Database Research
    • /
    • v.34 no.3
    • /
    • pp.137-147
    • /
    • 2018
  • A key to a well-performing human activity recognition (HAR) system through machine learning technique is the availability of a substantial amount of labeled data. Collecting sufficient labeled data is an expensive and time-consuming task. To build a HAR system in a new environment (i.e., the target domain) with very limited labeled data, it is unfavorable to naively exploit the data or trained classifier model from the existing environment (i.e., the source domain) as it is due to the domain difference. While traditional machine learning approaches are unable to address such distribution mismatch, transfer learning approach leverages the utilization of knowledge from existing well-established source domains that help to build an accurate classifier in the target domain. In this work, we propose a transfer learning approach to create an accurate HAR classifier with very limited data through the multitask neural network. The classifier loss function minimization for source and target domain are treated as two different tasks. The knowledge transfer is performed by simultaneously minimizing the loss function of both tasks using a single neural network model. Furthermore, we utilize the unlabeled data in an unsupervised manner to help the model training. The experiment result shows that the proposed work consistently outperforms existing approaches.

Expression and characterization of the recombinant human galectin-3 (유전자 재조합 Human galectin-3의 발현과 성상)

  • Kim, Byung-gyu;Woo, Hee-jong
    • Korean Journal of Veterinary Research
    • /
    • v.37 no.3
    • /
    • pp.547-554
    • /
    • 1997
  • Galectin-3 is known as an animal ${\beta}$-galactoside-binding lectin charicterized with S-type carbohydrate recognition domain. It plays a role in growth, adherence and movement of cells. It is, also, related to the cell transformation and metastasis of tumor cells. In this study, we have expressed and purified recombinant human galectin-3 (rHgalectin-3) using E coli system and asialofetuin affinity chromatography for the future development of monoclonal antibody to Hgalectin-3, which is suggested as the tumor marker for the gastric and thyroid gland cancers. Expressed protein was confirmed as the Hgalectin-3 by immunoblot with cross-reactive murine monoclonal antibody. Lectin activity and specificity of purified protein were, also, confirmed by the competitive inhibition with galectin-3 specific carbohydrate, lactose. Like physiological galectin-3, lectin activity of the molecule was not changed in nonreduced condition. Dimer formation, furthermore, was observed at high concentration of the protein even in the reduced condition, which is well known in physiological galectin-3. These results showed purified rHgalectin-3 has the same activity and molecular nature compared to the physiological galectin-3.

  • PDF

Voice Activity Detection with Run-Ratio Parameter Derived from Runs Test Statistic

  • Oh, Kwang-Cheol
    • Speech Sciences
    • /
    • v.10 no.1
    • /
    • pp.95-105
    • /
    • 2003
  • This paper describes a new parameter for voice activity detection which serves as a front-end part for automatic speech recognition systems. The new parameter called run-ratio is derived from the runs test statistic which is used in the statistical test for randomness of a given sequence. The run-ratio parameter has the property that the values of the parameter for the random sequence are about 1. To apply the run-ratio parameter into the voice activity detection method, it is assumed that the samples of an inputted audio signal should be converted to binary sequences of positive and negative values. Then, the silence region in the audio signal can be regarded as random sequences so that their values of the run-ratio would be about 1. The run-ratio for the voiced region has far lower values than 1 and for fricative sounds higher values than 1. Therefore, the parameter can discriminate speech signals from the background sounds by using the newly derived run-ratio parameter. The proposed voice activity detector outperformed the conventional energy-based detector in the sense of error mean and variance, small deviation from true speech boundaries, and low chance of missing real utterances

  • PDF

Statistical Modeling Methods for Analyzing Human Gait Structure (휴먼 보행 동작 구조 분석을 위한 통계적 모델링 방법)

  • Sin, Bong Kee
    • Smart Media Journal
    • /
    • v.1 no.2
    • /
    • pp.12-22
    • /
    • 2012
  • Today we are witnessing an increasingly widespread use of cameras in our lives for video surveillance, robot vision, and mobile phones. This has led to a renewed interest in computer vision in general and an on-going boom in human activity recognition in particular. Although not particularly fancy per se, human gait is inarguably the most common and frequent action. Early on this decade there has been a passing interest in human gait recognition, but it soon declined before we came up with a systematic analysis and understanding of walking motion. This paper presents a set of DBN-based models for the analysis of human gait in sequence of increasing complexity and modeling power. The discussion centers around HMM-based statistical methods capable of modeling the variability and incompleteness of input video signals. Finally a novel idea of extending the discrete state Markov chain with a continuous density function is proposed in order to better characterize the gait direction. The proposed modeling framework allows us to recognize pedestrian up to 91.67% and to elegantly decode out two independent gait components of direction and posture through a sequence of experiments.

  • PDF

Optimization of State-Based Real-Time Speech Endpoint Detection Algorithm (상태변수 기반의 실시간 음성검출 알고리즘의 최적화)

  • Kim, Su-Hwan;Lee, Young-Jae;Kim, Young-Il;Jeong, Sang-Bae
    • Phonetics and Speech Sciences
    • /
    • v.2 no.4
    • /
    • pp.137-143
    • /
    • 2010
  • In this paper, a speech endpoint detection algorithm is proposed. The proposed algorithm is a kind of state transition-based ones for speech detection. To reject short-duration acoustic pulses which can be considered noises, it utilizes duration information of all detected pulses. For the optimization of parameters related with pulse lengths and energy threshold to detect speech intervals, an exhaustive search scheme is adopted while speech recognition rates are used as its performance index. Experimental results show that the proposed algorithm outperforms the baseline state-based endpoint detection algorithm. At 5 dB input SNR for the beamforming input, the word recognition accuracies of its outputs were 78.5% for human voice noises and 81.1% for music noises.

  • PDF