• Title/Summary/Keyword: Human-activity Recognition

Search Result 201, Processing Time 0.032 seconds

Tempo-oriented music recommendation system based on human activity recognition using accelerometer and gyroscope data (가속도계와 자이로스코프 데이터를 사용한 인간 행동 인식 기반의 템포 지향 음악 추천 시스템)

  • Shin, Seung-Su;Lee, Gi Yong;Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.286-291
    • /
    • 2020
  • In this paper, we propose a system that recommends music through tempo-oriented music classification and sensor-based human activity recognition. The proposed method indexes music files using tempo-oriented music classification and recommends suitable music according to the recognized user's activity. For accurate music classification, a dynamic classification based on a modulation spectrum and a sequence classification based on a Mel-spectrogram are used in combination. In addition, simple accelerometer and gyroscope sensor data of the smartphone are applied to deep spiking neural networks to improve activity recognition performance. Finally, music recommendation is performed through a mapping table considering the relationship between the recognized activity and the indexed music file. The experimental results show that the proposed system is suitable for use in any practical mobile device with a music player.

A Study on Visual Perception based Emotion Recognition using Body-Activity Posture (사용자 행동 자세를 이용한 시각계 기반의 감정 인식 연구)

  • Kim, Jin-Ok
    • The KIPS Transactions:PartB
    • /
    • v.18B no.5
    • /
    • pp.305-314
    • /
    • 2011
  • Research into the visual perception of human emotion to recognize an intention has traditionally focused on emotions of facial expression. Recently researchers have turned to the more challenging field of emotional expressions through body posture or activity. Proposed work approaches recognition of basic emotional categories from body postures using neural model applied visual perception of neurophysiology. In keeping with information processing models of the visual cortex, this work constructs a biologically plausible hierarchy of neural detectors, which can discriminate 6 basic emotional states from static views of associated body postures of activity. The proposed model, which is tolerant to parameter variations, presents its possibility by evaluating against human test subjects on a set of body postures of activities.

Dynamic Human Activity Recognition Based on Improved FNN Model

  • Xu, Wenkai;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.4
    • /
    • pp.417-424
    • /
    • 2012
  • In this paper, we propose an automatic system that recognizes dynamic human gestures activity, including Arabic numbers from 0 to 9. We assume the gesture trajectory is almost in a plane that called principal gesture plane, then the Least Squares Method is used to estimate the plane and project the 3-D trajectory model onto the principal. An improved FNN model combined with HMM is proposed for dynamic gesture recognition, which combines ability of HMM model for temporal data modeling with that of fuzzy neural network. The proposed algorithm shows that satisfactory performance and high recognition rate.

Design and Implementation of CNN-Based Human Activity Recognition System using WiFi Signals (WiFi 신호를 활용한 CNN 기반 사람 행동 인식 시스템 설계 및 구현)

  • Chung, You-shin;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.4
    • /
    • pp.299-304
    • /
    • 2021
  • Existing human activity recognition systems detect activities through devices such as wearable sensors and cameras. However, these methods require additional devices and costs, especially for cameras, which cause privacy issue. Using WiFi signals that are already installed can solve this problem. In this paper, we propose a CNN-based human activity recognition system using channel state information of WiFi signals, and present results of designing and implementing accelerated hardware structures. The system defined four possible behaviors during studying in indoor environments, and classified the channel state information of WiFi using convolutional neural network (CNN), showing and average accuracy of 91.86%. In addition, for acceleration, we present the results of an accelerated hardware structure design for fully connected layer with the highest computation volume on CNN classifiers. As a result of performance evaluation on FPGA device, it showed 4.28 times faster calculation time than software-based system.

Middle School Environmental Education of the 7th National Curriculum and Application to Teen-agers Practice of Environmental Education (제7차 중학교 ‘환경’ 교육과정과 청소년 환경교육)

  • 이민부;박승규
    • Hwankyungkyoyuk
    • /
    • v.11 no.2
    • /
    • pp.14-25
    • /
    • 1998
  • The Quality of human living depends on the environmental quality of the region sustaining the life. The environmental deterioration of the modern society is due to mechanical environmentalism. For the better quality of the life, The changes of recognition and attitude on the environments are required. These changes of mind are also important in environmental education for teenagers. The 7th national curriculum, officially anounced December 1998, focuses on the change of attitude to environments and practical behavior in real life for “Environments”, the environmental education curriculum in middle school. Basic elements of the curriculum are cultivation of the pro-environmental thinking, multi-levelling of teaching materials and methods, and encouraging of student participating activity. Actually, the curriculum construction is composed of stepped-levelling of teaching and learning, reasonable contents volume, encouraging of student practice, and suggesting of evaluation standards of textbook writing. Three main subjects of environmental education for middle school consist of (1) man and environment, (2) recognition of environmental problem, and (3) protection activity for environment. Methodology of environmental education can include multi-disciplinary approaches, variable teaching methods, and continuing evaluation of student practice and participation attitude. Environmental education for teenagers relating to the 7th national curriculum focuses on recognition of the environmental problems and practice activity in daily life. The recognition includes considering relationship of human life to environment, solving environmental problems in regional context, and development of comprehensive understanding concept of the environments. For the practice education, variable teaching methods, such as field survey and application of multi-media, are needed.

  • PDF

Video Representation via Fusion of Static and Motion Features Applied to Human Activity Recognition

  • Arif, Sheeraz;Wang, Jing;Fei, Zesong;Hussain, Fida
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3599-3619
    • /
    • 2019
  • In human activity recognition system both static and motion information play crucial role for efficient and competitive results. Most of the existing methods are insufficient to extract video features and unable to investigate the level of contribution of both (Static and Motion) components. Our work highlights this problem and proposes Static-Motion fused features descriptor (SMFD), which intelligently leverages both static and motion features in the form of descriptor. First, static features are learned by two-stream 3D convolutional neural network. Second, trajectories are extracted by tracking key points and only those trajectories have been selected which are located in central region of the original video frame in order to to reduce irrelevant background trajectories as well computational complexity. Then, shape and motion descriptors are obtained along with key points by using SIFT flow. Next, cholesky transformation is introduced to fuse static and motion feature vectors to guarantee the equal contribution of all descriptors. Finally, Long Short-Term Memory (LSTM) network is utilized to discover long-term temporal dependencies and final prediction. To confirm the effectiveness of the proposed approach, extensive experiments have been conducted on three well-known datasets i.e. UCF101, HMDB51 and YouTube. Findings shows that the resulting recognition system is on par with state-of-the-art methods.

Continuous Human Activity Detection Using Multiple Smart Wearable Devices in IoT Environments

  • Alshamrani, Adel
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.2
    • /
    • pp.221-228
    • /
    • 2021
  • Recent improvements on the quality, fidelity and availability of biometric data have led to effective human physical activity detection (HPAD) in real time which adds significant value to applications such as human behavior identification, healthcare monitoring, and user authentication. Current approaches usually use machine-learning techniques for human physical activity recognition based on the data collected from wearable accelerometer sensor from a single wearable smart device on the user. However, collecting data from a single wearable smart device may not provide the complete user activity data as it is usually attached to only single part of the user's body. In addition, in case of the absence of the single sensor, then no data can be collected. Hence, in this paper, a continuous HPAD will be presented to effectively perform user activity detection with mobile service infrastructure using multiple wearable smart devices, namely smartphone and smartwatch placed in various locations on user's body for more accurate HPAD. A case study on a comprehensive dataset of classified human physical activities with our HAPD approach shows substantial improvement in HPAD accuracy.

Improving Performance of Human Action Recognition on Accelerometer Data (가속도 센서 데이터 기반의 행동 인식 모델 성능 향상 기법)

  • Nam, Jung-Woo;Kim, Jin-Heon
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.523-528
    • /
    • 2020
  • With a widespread of sensor-rich mobile devices, the analysis of human activities becomes more general and simpler than ever before. In this paper, we propose two deep neural networks that efficiently and accurately perform human activity recognition (HAR) using tri-axial accelerometers. In combination with powerful modern deep learning techniques like batch normalization and LSTM networks, our model outperforms baseline approaches and establishes state-of-the-art results on WISDM dataset.

Intelligent Healthcare Service Provisioning Using Ontology with Low-Level Sensory Data

  • Khattak, Asad Masood;Pervez, Zeeshan;Lee, Sung-Young;Lee, Young-Koo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.11
    • /
    • pp.2016-2034
    • /
    • 2011
  • Ubiquitous Healthcare (u-Healthcare) is the intelligent delivery of healthcare services to users anytime and anywhere. To provide robust healthcare services, recognition of patient daily life activities is required. Context information in combination with user real-time daily life activities can help in the provision of more personalized services, service suggestions, and changes in system behavior based on user profile for better healthcare services. In this paper, we focus on the intelligent manipulation of activities using the Context-aware Activity Manipulation Engine (CAME) core of the Human Activity Recognition Engine (HARE). The activities are recognized using video-based, wearable sensor-based, and location-based activity recognition engines. An ontology-based activity fusion with subject profile information for personalized system response is achieved. CAME receives real-time low level activities and infers higher level activities, situation analysis, personalized service suggestions, and makes appropriate decisions. A two-phase filtering technique is applied for intelligent processing of information (represented in ontology) and making appropriate decisions based on rules (incorporating expert knowledge). The experimental results for intelligent processing of activity information showed relatively better accuracy. Moreover, CAME is extended with activity filters and T-Box inference that resulted in better accuracy and response time in comparison to initial results of CAME.

Human Activities Recognition Based on Skeleton Information via Sparse Representation

  • Liu, Suolan;Kong, Lizhi;Wang, Hongyuan
    • Journal of Computing Science and Engineering
    • /
    • v.12 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • Human activities recognition is a challenging task due to its complexity of human movements and the variety performed by different subjects for the same action. This paper presents a recognition algorithm by using skeleton information generated from depth maps. Concatenating motion features and temporal constraint feature produces feature vector. Reducing dictionary scale proposes an improved fast classifier based on sparse representation. The developed method is shown to be effective by recognizing different activities on the UTD-MHAD dataset. Comparison results indicate superior performance of our method over some existing methods.