• Title/Summary/Keyword: Human stem cell factor

Search Result 141, Processing Time 0.025 seconds

Relationship among Public's Risk Characteristics, Risk Severity, Risk Perception and Risk Acceptability of Human Stem Cell Technology (공중의 체세포복제기술에 대한 위험특성, 위험심각성, 위험인식 및 위험수용의 관계)

  • Song, Hae-Ryong;Kim, Won-je
    • Journal of Digital Convergence
    • /
    • v.15 no.7
    • /
    • pp.415-424
    • /
    • 2017
  • The purpose of this study was to examine the relationship among public's risk characteristics, risk severity, risk perception and risk acceptability of human stem cell technology. The subjects were 300 Koreans selected. The data were analyzed by the exploratory factor analysis, confirmatory factor analysis, correlation analysis and structural equation modeing analysis. The results were as followed. First, public's risk characteristics on human stem cell technology influenced positively on risk severity. Second, public's risk characteristics on human stem cell technology influenced positively on risk perception. Third, public's risk severity on human stem cell technology influenced positively on risk perception. Fourth, public's risk characteristics on human stem cell technology influenced negatively on risk acceptability. Fifth, public's risk severity on human stem cell technology influenced not significantly on risk acceptability. Sixth, public's risk perception on human stem cell technology influenced not significantly on risk acceptability. These results will contribute to develop the risk communication strategy on the acceptability of human stem cell technology.

In Vitro Neural Cell Differentiation Derived from Human Embryonic Stem Cells: I. Effect of Neurotrophic Factors on Neural Progenitor Cells

  • Kim Eun-Yeong;Jo Hyeon-Jeong;Choe Gyeong-Hui;An So-Yeon;Jeong Gil-Saeng;Park Se-Pil;Im Jin-Ho
    • Proceedings of the KSAR Conference
    • /
    • 2002.06a
    • /
    • pp.18-18
    • /
    • 2002
  • This study was to investigate the effect of neurotrophic factors on neural cell differentiation in vitro derived from human embryonic stem (hES, MB03) cells. For neural progenitor cell formation derived from hES cells, we produced embryoid bodies (EB: for 5 days, without mitogen) from hES cells and then neurospheres (for 7 - 10 days, 20 ng/㎖ of bFGF added N2 medium) from EB. And then finally for the differentiation into mature neuron cells, neural progenitor cells were cultured in ⅰ) N2 medium (without bFGF), ⅱ) N2 supplemented with brain derived neurotrophic factor (BDNF, 5ng/㎖) or ⅲ) N2 supplemented with platelet derived growth factor-bb (PDGF-bb, 20ng/㎖) for 2 weeks. (omitted)

  • PDF

Global Proteomic Analysis of Mesenchymal Stem Cells Derived from Human Embryonic Stem Cells via Connective Tissue Growth Factor Treatment under Chemically Defined Feeder-Free Culture Conditions

  • Seo, Ji-Hye;Jeon, Young-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.126-140
    • /
    • 2022
  • Stem cells can be applied usefully in basic research and clinical field due to their differentiation and self-renewal capacity. The aim of this study was to establish an effective novel therapeutic cellular source and create its molecular expression profile map to elucidate the possible therapeutic mechanism and signaling pathway. We successfully obtained a mesenchymal stem cell population from human embryonic stem cells (hESCs) cultured on chemically defined feeder-free conditions and treated with connective tissue growth factor (CTGF) and performed the expressive proteomic approach to elucidate the molecular basis. We further selected 12 differentially expressed proteins in CTGF-induced hESC-derived mesenchymal stem cells (C-hESC-MSCs), which were found to be involved in the metabolic process, immune response, cell signaling, and cell proliferation, as compared to bone marrow derived-MSCs(BM-MSCs). Moreover, these up-regulated proteins were potentially related to the Wnt/β-catenin pathway. These results suggest that C-hESC-MSCs are a highly proliferative cell population, which can interact with the Wnt/β-catenin signaling pathway; thus, due to the upregulated cell survival ability or downregulated apoptosis effects of C-hESC-MSCs, these can be used as an unlimited cellular source in the cell therapy field for a higher therapeutic potential. Overall, the study provided valuable insights into the molecular functioning of hESC derivatives as a valuable cellular source.

Mast Cell Increase and Stem Cell Factor Receptor (c-kit) Expression in Helicobacter pylori-infected Gastritis (Helicobacter pylori 감염 위염에서의 비만세포 증가와 Stem Cell Factor Receptor (c-kit)의 발현)

  • Jekal, Seung-Joo
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.37 no.1
    • /
    • pp.41-46
    • /
    • 2005
  • It is known that mast cells (MCs) are increased in H. pylori-infected gastritis and its increase is mediated by stem cell factor (c-kit ligand). To determine the mechanism of mast cell recruitment and activation by stem cell factor, weinvestigated the expression of stem cell factor receptor (c-kit) in H. pylori-positive and -negative gastric mucosa. Biopsy specimens from 16 H. pylori-negative and 20 positive subjects were examined. H. pylori infection in gastric mucosa was examined by the Warthin-Starry method. MC and c-kit were identified by immunohistochemisty, using a monoclonal antihuman MC tryptase antibody and a polyclonal anti-human c-kit antibody. Densities of MC and c-kit positive cell were measured by a computerized image analysis system. MCs were detected in the lamina propria of both H. pylori-positive and -negative gastric mucosa. Densities of MC and c-kit positive cell were significantly greater in H. pylori-positive than -negative subjects. c-kit was located on the surface of MCs. These results indicate that stem cell factors may be one of the factors involved in mast cell increase and that they activate mast cells by binding with c-kit.

  • PDF

mTOR signalling pathway - A root cause for idiopathic autism?

  • Ganesan, Harsha;Balasubramanian, Venkatesh;Iyer, Mahalaxmi;Venugopal, Anila;Subramaniam, Mohana Devi;Cho, Ssang-Goo;Vellingiri, Balachandar
    • BMB Reports
    • /
    • v.52 no.7
    • /
    • pp.424-433
    • /
    • 2019
  • Autism spectrum disorder (ASD) is a complex neurodevelopmental monogenic disorder with a strong genetic influence. Idiopathic autism could be defined as a type of autism that does not have a specific causative agent. Among signalling cascades, mTOR signalling pathway plays a pivotal role not only in cell cycle, but also in protein synthesis and regulation of brain homeostasis in ASD patients. The present review highlights, underlying mechanism of mTOR and its role in altered signalling cascades as a triggering factor in the onset of idiopathic autism. Further, this review discusses how distorted mTOR signalling pathway stimulates truncated translation in neuronal cells and leads to downregulation of protein synthesis at dendritic spines of the brain. This review concludes by suggesting downstream regulators such as p70S6K, eIF4B, eIF4E of mTOR signalling pathway as promising therapeutic targets for idiopathic autistic individuals.

Expression of Human Stem Cell Factor with Recombinant Baculovirus in BmN Cell Line and Silkworm

  • Xijie, Guo;Yongfeng, Jin;Mingguan, Yang;Yaozhou, Zhang
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.4 no.1
    • /
    • pp.51-56
    • /
    • 2002
  • A recombinant transfer vector pBacSCF was constructed by inserting huamn stem cell factor (hSCF) cDNA into plasmid pBacPAK8. BmN cells were co-transfected with modified Bombyx mori, nuclear polyhedrosis virus (BmBacPAK) DNA and the recmbinant transfer vector to construct a recombinant baculovirus containing hSCE gene. DNA dot blotting and RNA dot blotting demonstrated that the hSCE gene was contained in the recombinant virus and transcribed. The recombinant baculovirus was infectious to BmN cells and to silkworm. SDS-PAGE analysis showed a specific band of expressed product in the extract of infected cells and in the heamolymph of infected larvae. Bioactivity of the recombinant hSCE was determined with W-1 cell line and MTT colorimetric method in synergy with interlukin-3 (IL-3). These results revealed that the hSCF gene was over-expressed in cultured cells and lavae of silkworm.

In Vitro Neural Cell Differentiation Derived from Human Embryonic Stem Cells: II. Generation of Specific Neurons from Neural Progenitor Cells Treated with BDNF and PDGF

  • Jo Hyeon-Jeong;Kim Eun-Yeong;Choe Gyeong-Hui;An So-Yeon;Park Se-Pil;Im Jin-Ho
    • Proceedings of the KSAR Conference
    • /
    • 2002.06a
    • /
    • pp.84-84
    • /
    • 2002
  • This study was to investigate generation of the specific neuronal cell in vitro from the neural progenitors derived from human embryonic stem (hES, MB03) cells. For the neural progenitor cell formation, we produced embryoid bodies (EB: for 5 days, without mitogen) from hES cells and then neurospheres (for 7-10 days, 20 ng/㎖ of bFGF added N2 medium) from EB. And then for the differentiation into neuronal cells, neural progenitor cells were cultured in N2 medium (without bFGF) supplemented with brain derived neurotrophic factor (BDNF, 5 ng/㎖) or platelet derived growth factor-bb (pDGF-bb, 20ng/㎖) for 2 weeks. (omitted)

  • PDF

Establishment of a Pancreatic Cancer Stem Cell Model Using the SW1990 Human Pancreatic Cancer Cell Line in Nude Mice

  • Pan, Yan;Gao, Song;Hua, Yong-Qiang;Liu, Lu-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.2
    • /
    • pp.437-442
    • /
    • 2015
  • Aim: To establish a pancreatic cancer stem cell model using human pancreatic cancer cells in nude mice to provide a platform for pancreatic cancer stem cell research. Materials and Methods: To establish pancreatic cancer xenografts using human pancreatic cancer cell line SW1990, nude mice were randomly divided into control and gemcitabine groups. When the tumor grew to a volume of $125mm^3$, they treated with gemcitabine at a dose of 50mg/kg by intraperitoneal injection of 0.2ml in the gemcitabine group, while the mice in control group were treated with the same volume of normal saline. Gemcitabine was given 2 times a week for 3 times. When the model was established, the proliferation of pancreatic cancer stem cells was observed by clone formation assay, and the protein and/or mRNA expression of pancreatic stem cell surface markers including CD24, CD44, CD133, ALDH, transcription factors containing Oct-4, Sox-2, Nanog and Gli, the key nuclear transcription factor in Sonic Hedgehog signaling pathway was detected by Western blot and/or RT-PCR to verify the reliability of this model. Results: This model is feasible and safe. During the establishment, no mice died and the weight of nude mice maintained above 16.5g. The clone forming ability in gemcitabine group was stronger than that of the control group (p<0.01). In gemcitabine group, the protein expression of pancreatic cancer stem cell surface markers including CD44, and ALDH was up-regulated, the protein and mRNA expression of nuclear transcription factor including Oct-4, Sox-2 and Nanog was also significantly increased (P<0.01). In addition, the protein expression of key nuclear transcription factor in Sonic Hedgehog signaling pathway, Gli-1, was significantly enhanced (p<0.01). Conclusions: The pancreatic cancer stem cell model was successfully established using human pancreatic cancer cell line SW1990 in nude mice. Gemcitabine could enrich pancreatic cancer stem cells, simultaneously accompanied by the activation of Sonic Hedgehog signaling pathway.

Production of Recombinant Protein, Human Stem Cell Factor, Using Insect Cell Line

  • Park, Sang-Mi;Kwon, Ki-Sang;Goo, Tae-Won;Yun, Eun-Young;Kang, Seok-Woo;Kim, Sung-Wan;Yu, Kweon;Kwon, O-Yu
    • Biomedical Science Letters
    • /
    • v.15 no.1
    • /
    • pp.37-45
    • /
    • 2009
  • Insect cell cultures have become important tools in the production of biological substances for use in a variety of research, human and veterinary medicine, and pest control applications. These applications often require the introduction of foreign DNA into the cells and have generally used methods originally developed for use with human and other mammalian cell cultures. While these methods can be successfully employed, they are often less efficient with insect cells and frequently involve complex procedures or require specialized equipment. Even when they do work, they may require substantial modification because of differences in the culture medium or growth patterns of insect cells. In this study, We have optimized transfection conditions of Sf9 cell line using insect expression vector pIZT/V5-His which expresses green fluorescent protein effectively. Human stem cell factor (hSCF) is a glycoprotein that plays a key role in hematopoiesis acting both as a positive and negative regulator, often in synergy with other cytokines. It also plays a key role in mast cell development, gametogenesis, and melanogenesis. It can exist in membrane-bound form and in proteolytically released soluble form. As determined by an enzyme-linked immunosorbent assay performed, hSCF level in supernatant averaged 995ng/ml. The human hSCF was partially purified by immunoaffinity chromatography and analyzed with sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting. The results show that the hSCF has N-linked carbohydrate and corresponds to the soluble form, at or about 223 amino acids in length. The findings suggest functional importance for soluble hSCF in cells.

  • PDF

Embryonic Stem Cell and Nuclear Transfer

  • 임정묵
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.06a
    • /
    • pp.19-25
    • /
    • 2002
  • Researches on manipulation pluripotent stem cells derived from blastocysts or promordial germ cells (PGCs) have a great advantages for developing innovative technologies in various fields of life science including medicine, pharmaceutics, and biotechnology. Since the first isolation in the mouse embryos, stem cells or stem cell-like colonies have been continuously established in the mouse of different strains, cattle, pig, rabbit, and human. In the animal species, stem cell biology is important for developing transgenic technology including disease model animal and bioreactor production. ES cell can be isolated from the inner cell mass of blastocysts by either mechanical operation or immunosurgery. So, mass production of blastocyst is a prerequisite factor for successful undertaking ES cell manipulation. In the case of animal ES cell research, various protocol of gamete biotechnology can be applied for improving the efficiency of stem cell research. Somatic cell nuclear transfer technique can be applied to researches on animal ES cells, since it is powerful tool for producing clone embryos containing genes of interest. In this presentation, a brief review was made for explaining how somatic cell nuclear transfer technology could contribute to improving stem cell manipulation technology.

  • PDF