• Title/Summary/Keyword: Human organs

Search Result 639, Processing Time 0.024 seconds

Simulation and assessment of 99mTc absorbed dose into internal organs from cardiac perfusion scan

  • Saghar Salari;Abdollah Khorshidi;Jamshid Soltani-Nabipour
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.248-253
    • /
    • 2023
  • Directly, it is not possible to measure the absorbed dose of radiopharmaceuticals in the organs of the human body. Therefore, simulation methods are utilized to estimate the dose in distinct organs. In this study, individual organs were separately considered as the source organ or target organ to calculate the mean absorption dose, which SAF and S factors were then calculated according to the target uptake via MIRD method. Here, 99mTc activity distribution within the target was analyzed using the definition and simulation of ideal organs by summing the fraction of cumulative activities of the heart as source organ. Thus, GATE code was utilized to simulate the Zubal humanoid phantom. To validate the outcomes in comparison to the similar results reported, the accumulation of activity in the main organs of the body was calculated at the moment of injection and cardiac rest condition after 60 min of injection. The results showed the highest dose absorbed into pancreas was about 21%, then gallbladder 18%, kidney 16%, spleen 15%, heart 8%, liver 8%, thyroid 7%, lungs 5% and brain 2%, respectively, after 1 h of injection. This distinct simulation model may also be used for different periods after injection and modifying the prescribed dose.

Realization of 3D Human's bone and Alimentary Canal by WWW (WWW 기반의 가상현실 속에서 인체의 골격과 소화기관의 3D 구현)

  • 강득찬;김영희;고봉진;곽군평;권현규;박무훈
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.2
    • /
    • pp.264-270
    • /
    • 2002
  • Current]y, the lack of equipments for the medical practice and education made it impossible for the people in medical institution to carry out suitable experiments for observing human bodies. In this paper, the authors embodied three dimensional images and moving pictures for the human skeletal structure, digestive organs and their processes over the internet framework. The three dimensional images and moving picture made it possible for the general people as well as the specialists to observe and obtain informations with regard to the human body. Especially, the authors realized a framework for visualizing the human bodies in three dimensional images, via which a detailed and realistic architecture for the human body and its organs can be obtained. The system developed in this Paper can be used in the practice and education of the people engaged in medical fields.

Evaluation of Absorbed Dose for the Right Lung and Surrounding Organs of the Computational Human Phantom in Brachytherapy by Monte Carlo Simulation (근접방사선치료 시 몬테카를로 전산모사를 이용한 인체전산팬텀의 우측 폐와 주변 장기 선량평가)

  • Lee, Jun-Seong;Kim, Yang-Soo;Kim, Min-Gul;Kim, Jung-Soo;Lee, Sun-Young
    • Journal of radiological science and technology
    • /
    • v.43 no.6
    • /
    • pp.443-451
    • /
    • 2020
  • This study is to evaluate absorbed dose from right lung for brachytherapy and to estimate the effects of tissue heterogeneities on dose distribution for Iridium-192 source using Monte Carlo simulation. The study employed Geant4 code as Monte Carlo simulation to calculate the dosimetry parameters. The dose distribution of Iridium-192 source in solid water equivalent phantom including aluminium plate or steel plate inserted was calculated and compared with the measured dose by the ion chamber at various distances. And the simulation was used to evaluate the dose of gamma radiation absorbed in the lung organ and other organs around it. The dose distribution embedded in right lung was calculated due to the presence of heart, thymus, spine, stomach as well as left lung. The geometry of the human body was made up of adult male MIRD type of the computational human phantom. The dosimetric characteristics obtained for aluminium plate inserted were in good agreement with experimental results within 4%. The simulation results of steel plate inserted agreed well with a maximum difference 2.75%. Target organ considered to receive a dose of 100%, the surrounding organs were left the left lung of 3.93%, heart of 10.04%, thymus of 11.19%, spine of 12.64% and stomach of 0.95%. When the statistical error is performed for the computational human phantom, the statistical error of value is under 1%.

Evaluation of the Potential Human Health Risk Associated with the Microcystin Bioaccumulation in the Freshwater Fish from Lake Yeongcheon and Lake Daecheong (영천호와 대청호에서 담수어류의 microcystin 농축에 따른 인체 건강위해성 평가)

  • Lee, Kyung-Lak;Jheong, Weon-Hwa;Kang, Young-Hoon;Kim, Han-Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.3
    • /
    • pp.331-339
    • /
    • 2009
  • This study evaluated the potential human health risk on the basis of the level of bioaccumulation and EDI (Estimated Daily Intake) of microcystin-LR, one of hepatotoxic, in organs, including liver, muscle, viscera and gill, of fish from Lake Yeongeheon and Lake Daecheong when the cyanobacterial water-blooms broke out. The result has confirmed that Carassius cuvieri from Lake Yeongcheon contains higher level of microcystin-LR in its organs including liver. In Lake Daecheong, omnivorous Hemibarbus labeo and phytoplanktivorous Carassius cuvieri have shown high microcystin-LR level on average, especially higher for viscera, and Carassius cuvieri has appeared to contain higher level of microcystin-LR in the liver and the gill compared with other species. As a result of comparison between EDI of microcystin-LR from each organs and TDI (Tolerable Daily Intake) of WHO (Chorus and Bartram, 1999) to evaluate human health risk, the EDI levels from Carassius cuvieri's organs except museles have exceeded TDI level at the both lakes. Consequently, the study has proved that microcystin was bioaccumulated in the various parts of fish, and it can be ingested by human resulting in risking human health. Continuous monitoring and reducing consumption of fish, especially Carassius cuvieri, during the cyanobacterial water-blooming period will be needed to protect human health.

Augmented Reality to Localize Individual Organ in Surgical Procedure

  • Lee, Dongheon;Yi, Jin Wook;Hong, Jeeyoung;Chai, Young Jun;Kim, Hee Chan;Kong, Hyoun-Joong
    • Healthcare Informatics Research
    • /
    • v.24 no.4
    • /
    • pp.394-401
    • /
    • 2018
  • Objectives: Augmented reality (AR) technology has become rapidly available and is suitable for various medical applications since it can provide effective visualization of intricate anatomical structures inside the human body. This paper describes the procedure to develop an AR app with Unity3D and Vuforia software development kit and publish it to a smartphone for the localization of critical tissues or organs that cannot be seen easily by the naked eye during surgery. Methods: In this study, Vuforia version 6.5 integrated with the Unity Editor was installed on a desktop computer and configured to develop the Android AR app for the visualization of internal organs. Three-dimensional segmented human organs were extracted from a computerized tomography file using Seg3D software, and overlaid on a target body surface through the developed app with an artificial marker. Results: To aid beginners in using the AR technology for medical applications, a 3D model of the thyroid and surrounding structures was created from a thyroid cancer patient's DICOM file, and was visualized on the neck of a medical training mannequin through the developed AR app. The individual organs, including the thyroid, trachea, carotid artery, jugular vein, and esophagus were localized by the surgeon's Android smartphone. Conclusions: Vuforia software can help even researchers, students, or surgeons who do not possess computer vision expertise to easily develop an AR app in a user-friendly manner and use it to visualize and localize critical internal organs without incision. It could allow AR technology to be extensively utilized for various medical applications.

Study on the Sound Quality Evaluation Method for the Vehicle Diesel Engine Noise (승용차 디젤 엔진 소음에 대한 음질 평가 기법 연구)

  • Kwon, Jo-Seph;Kim, Chan-Mook;Kim, Ki-Chang;Kim, Jin-Taek
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.10
    • /
    • pp.883-889
    • /
    • 2011
  • The brand sound of vehicle diesel engine is recently one of the important advantage strategies in the automotive company. Because various noise components masked under high frequency level can be audible in quieter driving situation. Many researches have been carried out for subjective and objective assessments on vehicle sounds and noises. In particular, the interior sound quality has been one of research fields that can give high quality feature to vehicle products. Vehicle interior noise above 500 Hz is usually controlled by sound package parts. The materials and geometries of sound package parts directly affect on this high frequency noise. This paper describes the sound quality evaluation method for the vehicle diesel engine noise to establish objective criteria for sound quality assessment. Considering the sensitivity of human hearing to impulsive sounds such as diesel noise, the human auditory mechanism was simulated by introducing temporal masking in the time domain. Furthermore, each of the human auditory organs was simulated by computer codes, providing reasonable analytical explanations of typical human hearing responses to diesel noise. This method finally provides the sound quality index of vehicle diesel engine noise that includes high frequency intermittent offensive sounds caused by impacting excitations of combustion and piston slap.

Feasibility of the 3D Printing Materials for Radiation Dose Reduction in Interventional Radiology (인터벤션 시술 시 환자의 선량감소를 위한 3D 프린팅 재료의 적용성 평가)

  • Cho, Yong-In
    • Journal of radiological science and technology
    • /
    • v.43 no.3
    • /
    • pp.169-176
    • /
    • 2020
  • Interventional radiology is performed under real-time fluoroscopy, and patients are exposed to a wide range of exposures for a long period of time depending on the examination and procedure. However, studies on radiation protection for patients during an intervention are insufficient. This study aims to evaluate the doses exposed during the intervention and the applicability of 3D printing materials. The organ dose for each intervention site was evaluated using a monte carlo simulatio. Also, the dose reduction effect of the critical organs was calculated when using a shielding device using 3D printing materials. As a result, the organ dose distribution for each intervention site showed a lower dose distribution for organs located far from the x-ray tube. It was analyzed that the influence of scattered rays was higher in the superficial organs of the back of the human body where x-rays were incident. The dose reduction effect on the critical organ using the 3D printing shield showed the highest testis among the gonads, and in the case of other organs, the dose reduction effect gradually decreased in the order of the eye, thyroid, breast, and ovary. Accordingly, it is judged that the 3D printed shield will be sufficiently usable as a shielding device for the radiation protection of critical organs.

The Organ projection system using holographic lens (홀로렌즈를 이용한 장기 투영 시스템)

  • Kim, dong young;Kim, dong hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.83-85
    • /
    • 2017
  • Generally, the current organ projection systems are the MRI and the CT. The MRI and the CT, (MRI) allow the surgeon to see the internal organs without incising the human body. However, since the images generated by the machines are 2D, it is difficult for doctors to observe the internal organs in three dimension. In this paper, we develop the augmented projection system for internal organs by using the augmented reality technology. The developed system shows the internal organs of the body using a holographic lens as a stereoscopic image and allows for doctors to examine the internal organs in detail.

  • PDF

A Study on Perspirations(汗出) in Daily Time Cycle (하루 중 시간변화(時間變化)에 따른 한출(汗出)의 기전(機轉)에 대한 연구(硏究))

  • Lyu, Jeong-Ah;Jeong, Chang-Hyun
    • Journal of Korean Medical classics
    • /
    • v.22 no.3
    • /
    • pp.271-289
    • /
    • 2009
  • This thesis intend to help the eastern medical doctor to understand body condition from interpretation of perspirations(汗出) in daily time cycle. The conclusion is followed. 1. In most Eastern Medical classic and clinic literatures, the time of fever and perspirations are described as a result of disease's position at human body. Following this description, in daytime the perspirations must come from the Gi phase and night time the perspirations must come from the blood phase. Because in daytime the skin pores are opening and the defensive Gi is going out to the superficial portion of the body. In night time the skin pores are shutting and the defensive Gi is going in to the five solid organs. So a sweat in daytime comes out from the Gi phase and superficial portion of the body. And in night time comes out from the blood phase and five solid organs. But in recent real clinic cases, in daytime, there are so many perspirations from the five solid organs. Comparatively, the perspirations from the superficial portion of body are very little. And in same daytime perspirations, when the heat pathogens mixed with moist, the symptom revelation time delay to the afternoon. Therefore it can be concluded that the time of perspirations are combination of disease's Gi or blood phase and characteristics of pathogens. The position of disease at human body cannot simply judge the symptom revelation time. 2. The exchange of climate following time cycle of a day effect to the condition of human body. At same time it activates or not activates the pathogens in human body. So we can consider the kinds and characteristics of pathogens by distinguishing the symptom revelation time. In general differentiation of syndromes[辨證] pathogen's kinds and location are generally judged. By understanding the characteristics of pathogen, doctor can devise more correct and delicate prescription.

  • PDF

Expression analysis of Porcine Endogenous Retroviruses (PERVs) in Korean native pig organs (한국재래돼지의 장기조직에서 PERVs의 발현 특성 분석)

  • Oh, Hyung-Gil;Jung, Woo-Young;Yu, Seung-Lan;Lee, Jun-Heon
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.1
    • /
    • pp.71-77
    • /
    • 2011
  • Pigs have anatomically and physiologically very similar to human and because of this, pigs are the possible xenotransplantation donors for human organs. PERVs (Porcine Endogenous Retroviruses) are known to be one of the possible obstacles for using porcine organs regardless of the immunological barriers. In order to understand the expression patterns of PERVs in Korean native pigs, we investigated PERV expressions in porcine liver, heart, spleen, and lung samples. After RNA extraction, two types of specific PERV envelope genes (ENV-A and ENV-B) were amplified using specific primers by RT-PCR. The results indicated that the variable PERV expressions were observed in inconsistent patterns among animals and tissues. The PERV expressions were verified with semi-quantitative real-time PCR with three replicates. Even though, these results confirm the previous findings that the PERVs were differentially expressed between animals and tissues. These results also give some valuable information for xenotransplantation when using the Korean native pigs as the organ donor.