• Title/Summary/Keyword: Human oral carcinoma cells

Search Result 144, Processing Time 0.026 seconds

Cytotoxic Effect of Syringic Acid on Human Oral Epithelioid Carcinoma Cells

  • Lee Joo-Hyun;Han Du-Suk;Jekal Seung-Joo;Lee Jae-Hyung;Kim Chong-Ho;Yoo Min;Park Seung-Taeck
    • Biomedical Science Letters
    • /
    • v.11 no.3
    • /
    • pp.337-341
    • /
    • 2005
  • This study was undertaken to clerify the cytotoxic effect of syringic acid by colorimetric assay on human cancer cells. For the evaluation of cytotoxicity of syringic acid, the cell viability and cell adhesion activity of syringic acid on cancer cells, human oral epithelioid carcinoma cells were determined using by colorimetric assays such as MTT (3-[4,5­dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay and XTT (2,3-bis-[2-methoxy-4-nitro-5-sulfophenyl]­2H-tetrazolium-5-caboxanilide) assay, respectively after human oral epithelioid carcinoma cells were treated with syringic acid for 48 hours. In this study, the cell viability of syringic acid on human oral epithelioid carcinoma cells showed a significant decrease by MTT assay compared with control, and also, the cell adhesion activity by XTT assay was decreased significantly in these cells after cells were treated with various concentrations of syringic acid for 48 hours. $MTT_{50}\;and\;XTT_{50}\;were\;282.3\;{\mu}M\;and\;418.8{\mu}M$ syringic acid, respectively. These results suggest that syringic acid shows midcytotoxic effect on human oral epithelioid carcinoma cells by the decreasement of the cell viability and the cell adehision activity assessed by colorimetric assay in these cultures.

  • PDF

The Growth Inhibitory Effects of Epigallocatechin Gallate Against Human Skin Melanoma Cells and Human Oral Epitheloid Carcinoma Cells (Epigallocatechin gallate의 인체 피부흑색종세포와 인체 구강유상피암종세포에 대한 성장억제효과)

  • 한두석;박승택;백승화
    • Environmental Mutagens and Carcinogens
    • /
    • v.18 no.2
    • /
    • pp.98-103
    • /
    • 1998
  • Epigallocatechin gallate (EGCG) was reported to exert weak cytotoxicity against normal healthy cells such as C3H10T1/2 cells, but profound inhibitory effects on the initiation or promotion stage of chemical carcinogenesis in mammary gland, blood and mouse skin. This study was carried out to develop antitumor agents with weak side effects and strong antitumor activity. Human skin melanoma cells (HBT 69) and human oral epitheloid carcinoma cells (OCL 17) were cultured in RPMI-1640 media containing 10% fetal bovine serum, antibiotic, and fungizone. After incubation for 24 hrs, the cells were treated with various amounts of (EGCG) for 48 hrs. The growth inhibitory effects of EGCG in human oral epitheloid carcinoma cells were evaluated by the 3- (4,5-djmethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), neutral red (NR), and sulforhodamine B protein (SRB) assays of colorimetric methods. The light microscopic study was also carried out to observe morphological changes of the treated cells. These results obtained were as follows; 1. Significantly inhibitory effects of EGCG against cultured human oral epithelioid carcinoma cells. 2. Significantly inhibitory effects against cultured human skin melanoma cells treated with 50 $\mu$M EGCG, but decreased inhibitory effects in 100 $\mu$M EGCG. 3. Degenerative changes against cultured human oral epitheloid carcinoma cells. 4. Degenerative changes against human skin melanoma cells treated with 50 UM EGCG, but recovered degenerative changes in 100 $\mu$M EGCG.

  • PDF

Development of Anticancer Agents from Korean Medicinal Plants (Part 4). Antitumor Activity of the Butanol Soluble Fraction of Perilla frutescens (한국산 생약으로부터 항암물질의 개발(제4보) 소엽 부탄올 가용분획의 항암활성)

  • 최규은;곽정숙;김영옥;백승화;한두석
    • Toxicological Research
    • /
    • v.13 no.4
    • /
    • pp.311-316
    • /
    • 1997
  • This study was carried out to develop antitumor effect of the n-butanol soluble fraction of Perilla frutescens on (KB cells) human oral epitheloid carcinoma cells. The cytotoxictty of methanollc extract of Perilla frutescens on KB cells was evaluated by 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide(MTT) assay. The antitumor activity of various fractions obtained from n-butanol soluble fraction of Perilla frutescens was evaluated in human oral epithelold carcinoma cells. The antitumor acavity of the n-butanol soluble fraction on human oral epitheloid carcinoma cells was evaluated by MTT assay of colorimetric method. The light microscopic study was carried out to observe morphological changes of cultured human oral epitheloid carcinoma cells. These results were obtained as follows; 1. The fractions 1,2 and 3 of the n-butanol soluble fraction of Perilla frutescens were shown significant antitumor activities. 2. The number of human oral epitheloid carcinoma cells were decreased and tend to form cell cluster by treatment with fractions 1,2,3 and 4 of the n-butanol soluble fraction of Perilla frutescens. 3. The fraction 1 of the n-butanol soluble fraction of Perllla frutescens showed the highest antitumor activity on Perilla frutescens. It has been selected as a lead fraction for further examinations.

  • PDF

Mechanism Underlying NaF-Induced Apoptosis in Human Oral Squamous Cell Carcinoma

  • Hur, Young-Joo;Kim, Do-Kyun;Lee, Seung-Eun;Kim, In-Ryoung;Jeong, Na-Young;Kim, Ji-Young;Park, Bong-Soo
    • International Journal of Oral Biology
    • /
    • v.35 no.2
    • /
    • pp.51-60
    • /
    • 2010
  • Few studies have evaluated the apoptosis-inducing efficacy of NaF on cancer cells in vitro but there has been no previous investigation of the apoptotic effects of NaF on human oral squamous cell carcinoma cells. In this study, we have investigated the mechanisms underlying the apoptotic response to NaF treatment in the YD9 human squamous cell carcinoma cell line. The viability of YD9 cells and their growth inhibition were assessed by MTT and clonogenic assays, respectively. Hoechst staining, DNA electrophoresis and TUNEL staining were conducted to detect apoptosis. YD9 cells were treated with NaF, and western blotting, immunocytochemistry, confocal microscopy, FACScan flow cytometry, and MMP and proteasome activity assays were performed sequentially. The NaF treatment resulted in a time- and dose-dependent decrease in YD9 cell viability, a dose-dependent inhibition of cell growth, and the induction of apoptotic cell death. The apoptotic response of these cells was manifested by nuclear condensation, DNA fragmentation, the reduction of MMP and proteasome activity, a decreased DNA content, the release of cytochrome c into the cytosol, the translocation of AIF and DFF40 (CAD) into the nucleus, a significant shift of the Bax/Bcl-2 ratio, and the activation of caspase-9, caspase-3, PARP, Lamin A/C and DFF45 (ICAD). Furthermore, NaF treatment resulted in the downregulation of G1 cell cyclerelated proteins, and upregulation of p53 and the Cdk inhibitor $p27^{KIP1}$. Taken collectively, our present findings demonstrate that NaF strongly inhibits YD9 cell proliferation by modulating the expression of G1 cell cycle-related proteins and inducing apoptosis via mitochondrial and caspase pathways.

Effect of secretory leukocyte protease inhibitor on migration and invasion of human KB oral carcinoma cells

  • Wang, Guanlin;Lim, Do-Seon;Choi, Baik-Dong;Park, Jin-Ju;Jeong, Soon-Jeong;Kim, Jin-Soo;Kim, Jae-Duk;Park, Jung-Su;Kim, Eung-Kwon;Kim, Byung-Hoon;Ham, Joo-Hyun;Jeong, Moon-Jin
    • Animal cells and systems
    • /
    • v.15 no.2
    • /
    • pp.139-146
    • /
    • 2011
  • Secretory leukocyte protease inhibitor (SLPI) plays an important role in promoting the invasion and metastasis of a range of cancer cells. However, there are no reports of the expression and function of SLPI in oral carcinoma cells. In this study, the oral carcinoma cell line KB was used to determine whether SLPI affects the proliferation, migration and invasion of oral carcinoma cells. RT-PCR and Western blotting revealed high levels of endogenous SLPI expression in KB cells as well as a strong increase in SLPI secretion after wounding compared to immortalized normal oral keratinocytes (INOK). The wound healing assay revealed more migration of KB cells than INOK cells, and the SLPI treatment increased the migration of KB cells. KB cell proliferation was increased significantly by the SLPI protein but decreased by SLPI-siRNA. SLPI strongly increased the migration and invasion of KB cells. On the other hand, SLPI-siRNA decreased the migration and invasion of KB cells. This suggests that SLPI plays an important role in the metastasis of oral carcinoma cells.

Methanol extracts of Humulus japonicus induced apoptosis in human FaDu hypopharynx squamous carcinoma cells

  • Jang, Ji Yeon;Park, Bo-Ram;Lee, Seul Ah;Choi, Mi Suk;Kim, Chun Sung
    • International Journal of Oral Biology
    • /
    • v.47 no.1
    • /
    • pp.9-15
    • /
    • 2022
  • Humulus japonicus (HJ) is a widely used herbal medicine for pulmonary tuberculosis, hypertension, leprosy, and venomous wounds in Asia, particularly in China. Although HJ has certain physiological activities, such as longitudinal bone growth, antioxidation and alleviation of rheumatism, its anticancer activities, other than in colorectal and ovarian cancer, are yet to be studied. In this study, we investigated the anti-cancer activity and mechanism of methanol extracts of HJ (MeHJ) against human FaDu hypopharyngeal squamous carcinoma cells. MeHJ suppressed FaDu cell viability without affecting normal cells (L929), which was demonstrated using the MTT and Live & Dead assays. Furthermore, MeHJ effectively inhibited colony formation of FaDu cells, even at non-cytotoxic concentrations, and significantly induced apoptosis through the proteolytic cleavage of caspase-9, -3, -7, poly (ADP-ribose) polymerase and through the downregulation of BCL-2 and upregulation of BAX in FaDu cells, as determined by DAPI staining, flow cytometry, and western blot analyses. Collectively, these findings suggest that the inhibitory effects of MeHJ on the growth and colony formation of oral cancer cells may be mediated by caspase- and mitochondrial-dependent apoptotic pathways in human FaDu hypopharyngeal squamous carcinoma cells. Therefore, MeHJ has the potential to be used as a natural chemotherapeutic drug against human oral cancer.

Anti-cancer Activity of Anthricin through Caspase-dependent Apoptosis in Human Hypopharyngeal Squamous Carcinoma Cell

  • Kim, Won Gi;Lee, Seul Ah;Moon, Sung Min;Kim, Jin-Soo;Kim, Su-Gwan;Shin, Yong Kook;Kim, Do Kyung;Kim, Chun Sung
    • International Journal of Oral Biology
    • /
    • v.41 no.4
    • /
    • pp.183-190
    • /
    • 2016
  • Anthricin (Deoxypodophyllotoxin), a naturally occurring flavolignan, has well known anti-cancer properties in several cancer cells, such as prostate cancer, cervical carcinoma and pancreatic cancer. However, the effects of Anthricin are currently unknown in oral cancer. We examined the anticancer effect and mechanism of action of Anthricin in human FaDu hypopharyngeal squamous carcinoma cells. Our data showed that Anthricin inhibits cell viability in a dose- and time-dependent manner ($IC_{50}$ 50 nM) in the MTT assay and Live & Dead assay. In addition, Anthricin treated FaDu cells showed marked apoptosis by DAPI stain and FACS. Furthermore, Anthricin activates anti-apoptotic factors such as caspase-3, -9 and poly (ADP-ribose) polymerase (PARP), suggesting that caspase-mediated pathways are involved in Anthricin- induced apoptosis. Anthricin treatment also leads to accumulation of the pro-apoptotic factor Bax, followed by inhibition of cell growth. Taken together, these results indicate that Anthricn-induced cell death of human FaDu hypopharyngeal squamous carcinoma cells is mediated by mitochondrial-dependent apoptotic pathway. In summary, our findings provide a framework for further exploration on Anthricin as a novel chemotherapeutic drug for human oral cancer.

Resveratrol inhibits cell growth via targeting the Bmi-1 pathway in YD-10B human oral squamous cell carcinoma cells

  • Park, Kyoung-Eun;Ok, Chang Youp;Jang, Hye-Ock;Bae, Moon-Kyoung;Bae, Soo-Kyung
    • International Journal of Oral Biology
    • /
    • v.45 no.3
    • /
    • pp.115-125
    • /
    • 2020
  • Resveratrol has been reported to exert anticancer activity via modulation of multiple pathways and genes. In this study, we examined the effect of resveratrol on YD-10B human oral squamous cell carcinoma cells and its molecular mechanisms of action. We found that resveratrol inhibited the proliferation of YD-10B cells in a dose- and time-dependent manner. The suppressive effect of resveratrol was accompanied by a reduction in Bmi-1 gene expression. We observed that silencing the Bmi-1 gene by small interfering RNA effectively downregulated the levels of GLUT1 mRNA and protein, which were also repressed by resveratrol. Bmi-1 silencing increased the number of YD-10B cells in S-phase arrest by approximately 2.3-fold compared with the control. In conclusion, the results of the present study demonstrate, for the first time, that resveratrol suppresses Bmi-1-mediated GLUT1 expression in human oral squamous cell carcinoma cells and suggest that the specific molecular targeting of Bmi-1 and/or GLUT1 expression can be combined with a chemotherapeutic strategy to improve the response of oral cancer cells to resveratrol.

Apoptosis and Autophagy Induced by Methanol Extract of Kochia scoparia in Human Mucoepidermoid Carcinoma Cell Line (점액표피양암종 세포주에서 Kochia scoparia 추출물의 세포자멸과 자가포식 유도 효과)

  • Do, Mihyang;Ryu, Mi Heon;Kim, Uk-Kyu
    • The Korean Journal of Oral and Maxillofacial Pathology
    • /
    • v.42 no.6
    • /
    • pp.167-174
    • /
    • 2018
  • Natural products are vastly utilized as a source of chemotherapeutic agents for human cancers. Kochia scopraia is traditionally used for the cure of urological and dermatological diseases. Recently, methanol extract of Kochia scoparia (MEKS) has been shown to have anti-cancer activity to various human cancers. However, there is no report demonstrating the anti-cancer activity of MEKS in human mucoepidermoid carcinoma (MEC) cells. In this study, the authors studied the effects of MEKS on the cell proliferation and underlying mechanism in YD15 human MEC cells. MEKS decreased YD15 cell proliferation proven by trypan blue exclusion assay and induced apoptosis, evidenced by cell cycle analysis and western blotting. Autophagy induction by MEKS was verified by western blotting. In addition, MEKS regulated the expression of phosphorylated Akt, phosphorylated p38 and Nrf2 protein. This results can imply that MEKS might be a potential candidate for the treatment of human MEC cells.

Methanol extracts of Asarum sieboldii Miq. induces apoptosis via the caspase pathway in human FaDu hypopharynx squamous carcinoma cells

  • Lee, Seul Ah;Park, Bo-Ram;Kim, Chun Sung
    • International Journal of Oral Biology
    • /
    • v.46 no.2
    • /
    • pp.85-93
    • /
    • 2021
  • Asarum sieboldii Miq. (Aristolochiaceae) is a perennial herbaceous plant and has been used as traditional medicine for treating diseases, cold, fever, phlegm, allergies, chronic gastritis, and acute toothaches. Also, it has various biological activities, such as antiallergic, antiinflammatory, antinociceptive, and antifungal. However, the anticancer effect of A. sieboldii have been rarely reported, except anticancer effect on lung cancer cell (A549) of water extracts of A. sieboldii. This study investigated the anticancer activity of methanol extracts of A. sieboldii (MeAS) and the underlying mechanism in human FaDu hypopharyngeal squamous carcinoma cells. MeAS inhibited FaDu cells grown dose-dependently without affecting normal cells (L929), as determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and live and dead assay. In addition, concentration of MeAS without cytotoxicity (0.05 and 0.1 mg/mL) inhibited migration and colony formation. Moreover, MeAS treatment significantly induced apoptosis through the proteolytic cleavage of caspase-3, -7, -9, poly (ADP-ribose) polymerase, and downregulation of Bcl-2 and upregulation of Bax in FaDu cells, as determined by fluorescence-activated cell sorting analysis, 4'6-diamidino-2-phenylindole stain, and western blotting. Altogether, these results suggest that MeAS exhibits strong anticancer effects by suppressing the growth of oral cancer cells and the migration and colony formation via caspase- and mitochondrial-dependent apoptotic pathways in human FaDu hypopharyngeal squamous carcinoma cells. Therefore, MeAS can serve as a natural chemotherapeutic for human oral cancer.