• 제목/요약/키워드: Human keypoint detection

검색결과 12건 처리시간 0.022초

Convolutional GRU and Attention based Fall Detection Integrating with Human Body Keypoints and DensePose

  • Yi Zheng;Cunyi Liao;Ruifeng Xiao;Qiang He
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권9호
    • /
    • pp.2782-2804
    • /
    • 2024
  • The integration of artificial intelligence technology with medicine has rapidly evolved, with increasing demands for quality of life. However, falls remain a significant risk leading to severe injuries and fatalities, especially among the elderly. Therefore, the development and application of computer vision-based fall detection technologies have become increasingly important. In this paper, firstly, the keypoint detection algorithm ViTPose++ is used to obtain the coordinates of human body keypoints from the camera images. Human skeletal feature maps are generated from this keypoint coordinate information. Meanwhile, human dense feature maps are produced based on the DensePose algorithm. Then, these two types of feature maps are confused as dual-channel inputs for the model. The convolutional gated recurrent unit is introduced to extract the frame-to-frame relevance in the process of falling. To further integrate features across three dimensions (spatio-temporal-channel), a dual-channel fall detection algorithm based on video streams is proposed by combining the Convolutional Block Attention Module (CBAM) with the ConvGRU. Finally, experiments on the public UR Fall Detection Dataset demonstrate that the improved ConvGRU-CBAM achieves an F1 score of 92.86% and an AUC of 95.34%.

RGB-D 정보를 이용한 객체 탐지 기반의 신체 키포인트 검출 방법 (A Method for Body Keypoint Localization based on Object Detection using the RGB-D information)

  • 박서희;전준철
    • 인터넷정보학회논문지
    • /
    • 제18권6호
    • /
    • pp.85-92
    • /
    • 2017
  • 최근 영상감시 분야에서는 영상에서 움직이는 사람을 탐지하고, 탐지된 사람의 행위를 분석하는 방식에 딥러닝 기반 학습방법이 적용되기 시작했다. 이러한 지능형 영상분석 기술을 적용할 수 있는 분야 중 하나인 인간 행위 인식은 객체를 탐지하고 탐지된 객체의 행위를 인식하기 위해 신체 키포인트를 검출 하는 과정을 거치게 된다. 본 논문에서는 RGB-D 정보를 이용한 객체 탐지 기반의 신체 키포인트 검출 방법을 제시한다. 먼저, 두 대의 카메라로 생성된 색상정보와 깊이정보를 이용하여 이동하는 객체를 배경으로부터 분할하여 탐지한다. RGB-D 정보를 이용하여 탐지된 객체의 영역을 재조정하여 생성된 입력 데이터를 한 사람의 자세 추정을 위한 Convolutional Pose Machines(CPM)에 적용한다. CPM을 이용하여 한 사람당 14개의 신체부위에 대한 신념 지도(Belief Map)를 생성하고, 신념 지도를 기반으로 신체 키포인트를 검출한다. 이와 같은 방법은 키포인트를 검출할 객체에 대한 정확한 영역을 제공하게 되며, 개별적인 신체 키포인트의 검출을 통하여 단일 신체 키포인트 검출에서 다중 신체 키포인트 검출로 확장 할 수 있다. 향후, 검출된 키포인트를 이용하여 인간 자세 추정을 위한 모델을 생성할 수 있으며 인간 행위 인식 분야에 기여 할 수 있다.

Hierarchical Graph Based Segmentation and Consensus based Human Tracking Technique

  • Ramachandra, Sunitha Madasi;Jayanna, Haradagere Siddaramaiah;Ramegowda, Ramegowda
    • Journal of Information Processing Systems
    • /
    • 제15권1호
    • /
    • pp.67-90
    • /
    • 2019
  • Accurate detection, tracking and analysis of human movement using robots and other visual surveillance systems is still a challenge. Efforts are on to make the system robust against constraints such as variation in shape, size, pose and occlusion. Traditional methods of detection used the sliding window approach which involved scanning of various sizes of windows across an image. This paper concentrates on employing a state-of-the-art, hierarchical graph based method for segmentation. It has two stages: part level segmentation for color-consistent segments and object level segmentation for category-consistent regions. The tracking phase is achieved by employing SIFT keypoint descriptor based technique in a combined matching and tracking scheme with validation phase. Localization of human region in each frame is performed by keypoints by casting votes for the center of the human detected region. As it is difficult to avoid incorrect keypoints, a consensus-based framework is used to detect voting behavior. The designed methodology is tested on the video sequences having 3 to 4 persons.

모바일 증강현실을 위한 특징점 인식, 추적 기술 및 사례 연구 (Research Trends and Case Study on Keypoint Recognition and Tracking for Augmented Reality in Mobile Devices)

  • 최희승;안상철;김익재
    • 한국HCI학회논문지
    • /
    • 제10권2호
    • /
    • pp.45-55
    • /
    • 2015
  • 최근 증강현실 분야에서 특징점 인식 및 추적 기술은 비마커 기반의 증강 현실 서비스 구현에 중요한 역할을 담당하고 있다. 특징점 인식 및 추적 기술은 오래 전부터 컴퓨터 비전 등 여러 분야의 많은 연구자들에 의해 심도 있게 연구되어 왔으며, 특히 최근 급성장하고 있는 모바일 관련 시스템에 적용하기 위해 모바일 임베디드 환경에 접목 가능한 특징점 기반의 다양한 인식 및 추적 기술들이 소개되고 있다. 따라서 본 논문에서는 널리 활용되고 있는 특징점 기반의 매칭 및 추적의 다양한 핵심 요소 기술 (특징점 추출, 특징점 기술, 특징점 매칭 및 추적)에 대한 최신 동향을 분석하고, 본 한국과학기술연구원 연구팀이 수행한 모바일 증강현실 서비스 관련 사례 연구인 관광 지도 인식 및 추적 연구를 소개하고자 한다.

2D Human Pose Estimation based on Object Detection using RGB-D information

  • Park, Seohee;Ji, Myunggeun;Chun, Junchul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권2호
    • /
    • pp.800-816
    • /
    • 2018
  • In recent years, video surveillance research has been able to recognize various behaviors of pedestrians and analyze the overall situation of objects by combining image analysis technology and deep learning method. Human Activity Recognition (HAR), which is important issue in video surveillance research, is a field to detect abnormal behavior of pedestrians in CCTV environment. In order to recognize human behavior, it is necessary to detect the human in the image and to estimate the pose from the detected human. In this paper, we propose a novel approach for 2D Human Pose Estimation based on object detection using RGB-D information. By adding depth information to the RGB information that has some limitation in detecting object due to lack of topological information, we can improve the detecting accuracy. Subsequently, the rescaled region of the detected object is applied to ConVol.utional Pose Machines (CPM) which is a sequential prediction structure based on ConVol.utional Neural Network. We utilize CPM to generate belief maps to predict the positions of keypoint representing human body parts and to estimate human pose by detecting 14 key body points. From the experimental results, we can prove that the proposed method detects target objects robustly in occlusion. It is also possible to perform 2D human pose estimation by providing an accurately detected region as an input of the CPM. As for the future work, we will estimate the 3D human pose by mapping the 2D coordinate information on the body part onto the 3D space. Consequently, we can provide useful human behavior information in the research of HAR.

RGB-D 정보를 이용한 2차원 키포인트 탐지 기반 3차원 인간 자세 추정 방법 (A Method for 3D Human Pose Estimation based on 2D Keypoint Detection using RGB-D information)

  • 박서희;지명근;전준철
    • 인터넷정보학회논문지
    • /
    • 제19권6호
    • /
    • pp.41-51
    • /
    • 2018
  • 최근 영상 감시 분야에서는 지능형 영상 감시 시스템에 딥 러닝 기반 학습 방법이 적용되어 범죄, 화재, 이상 현상과 같은 다양한 이벤트들을 강건하게 탐지 할 수 있게 되었다. 그러나 3차원 실세계를 2차원 영상으로 투영시키면서 발생하는 3차원 정보의 손실로 인하여 폐색 문제가 발생하기 때문에 올바르게 객체를 탐지하고, 자세를 추정하기 위해서는 폐색 문제를 고려하는 것이 필요하다. 따라서 본 연구에서는 기존 RGB 정보에 깊이 정보를 추가하여 객체 탐지 과정에서 나타나는 폐색 문제를 해결하여 움직이는 객체를 탐지하고, 탐지된 영역에서 컨볼루션 신경망을 이용하여 인간의 관절 부위인 14개의 키포인트의 위치를 예측한다. 그 다음 자세 추정 과정에서 발생하는 자가 폐색 문제를 해결하기 위하여 2차원 키포인트 예측 결과와 심층 신경망을 이용하여 자세 추정의 범위를 3차원 공간상으로 확장함으로써 3차원 인간 자세 추정 방법을 설명한다. 향후, 본 연구의 2차원 및 3차원 자세 추정 결과는 인간 행위 인식을 위한 용이한 데이터로 사용되어 산업 기술 발달에 기여 할 수 있다.

RGBD 카메라 기반의 Human-Skeleton Keypoints와 2-Stacked Bi-LSTM 모델을 이용한 낙상 탐지 (Fall Detection Based on 2-Stacked Bi-LSTM and Human-Skeleton Keypoints of RGBD Camera)

  • 신병근;김응호;이상우;양재영;김원겸
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권11호
    • /
    • pp.491-500
    • /
    • 2021
  • 본 연구에서는 MS Kinect v2 RGBD 카메라 기반의 Human-Skeleton Keypoints와 2-Stacked Bi-LSTM 모델을 이용하여 낙상 행위를 탐지하는 방법을 제안한다. 기존의 연구는 RGB 영상에서 OpenPose 등의 딥러닝 모델을 이용하여 골격 정보를 추출한 후 LSTM, GRU 등의 순환신경망 모델을 이용해 인식을 수행하였다. 제안한 방법은 카메라로부터 골격정보를 바로 전달 받아 가속도 및 거리의 2개의 시계열 특징을 추출한 후 2-Stacked Bi-LSTM 모델을 이용하여 낙상 행위를 인식하였다. 어깨, 척추, 골반 등 주요 골격을 대상으로 중심관절을 구하고 이 중심관절의 움직임 가속도와 바닥과의 거리를 특징으로 제안하였다. 추출된 특징은 Stacked LSTM, Bi-LSTM 등의 모델과 성능비교를 수행하였고 GRU, LSTM 등의 기존연구에 비해 향상된 검출 성능을 실험을 통해 증명하였다.

조명을 위한 인간 자세와 다중 모드 이미지 융합 - 인간의 이상 행동에 대한 강력한 탐지 (Multimodal Image Fusion with Human Pose for Illumination-Robust Detection of Human Abnormal Behaviors)

  • ;공성곤
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.637-640
    • /
    • 2023
  • This paper presents multimodal image fusion with human pose for detecting abnormal human behaviors in low illumination conditions. Detecting human behaviors in low illumination conditions is challenging due to its limited visibility of the objects of interest in the scene. Multimodal image fusion simultaneously combines visual information in the visible spectrum and thermal radiation information in the long-wave infrared spectrum. We propose an abnormal event detection scheme based on the multimodal fused image and the human poses using the keypoints to characterize the action of the human body. Our method assumes that human behaviors are well correlated to body keypoints such as shoulders, elbows, wrists, hips. In detail, we extracted the human keypoint coordinates from human targets in multimodal fused videos. The coordinate values are used as inputs to train a multilayer perceptron network to classify human behaviors as normal or abnormal. Our experiment demonstrates a significant result on multimodal imaging dataset. The proposed model can capture the complex distribution pattern for both normal and abnormal behaviors.

Multi-resolution Fusion Network for Human Pose Estimation in Low-resolution Images

  • Kim, Boeun;Choo, YeonSeung;Jeong, Hea In;Kim, Chung-Il;Shin, Saim;Kim, Jungho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권7호
    • /
    • pp.2328-2344
    • /
    • 2022
  • 2D human pose estimation still faces difficulty in low-resolution images. Most existing top-down approaches scale up the target human bonding box images to the large size and insert the scaled image into the network. Due to up-sampling, artifacts occur in the low-resolution target images, and the degraded images adversely affect the accurate estimation of the joint positions. To address this issue, we propose a multi-resolution input feature fusion network for human pose estimation. Specifically, the bounding box image of the target human is rescaled to multiple input images of various sizes, and the features extracted from the multiple images are fused in the network. Moreover, we introduce a guiding channel which induces the multi-resolution input features to alternatively affect the network according to the resolution of the target image. We conduct experiments on MS COCO dataset which is a representative dataset for 2D human pose estimation, where our method achieves superior performance compared to the strong baseline HRNet and the previous state-of-the-art methods.

RGB 이미지와 Depth 이미지를 이용한 3D 휴먼 키포인트 탐지 (3D Human Keypoint Detection With RGB and Depth Image)

  • 정근석;이예지;윤경로
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2021년도 하계학술대회
    • /
    • pp.239-241
    • /
    • 2021
  • 2019 발생한 COVID-19로 인하여 전 세계 사람들의 여가 활동이 제한되면서 건강관리를 위해 홈 트레이닝에 많은 관심을 기울이고 있다. 뿐만 아니라 최근 컴퓨팅 기술의 발전에 따라 사람의 행동을 눈으로 직접 판단했던 작업을 컴퓨터가 키포인트 탐지를 통해 인간의 행동을 이해하려는 많은 연구가 진행되고 있다. 이에 따라 본 논문은 Azure Kinect를 이용하여 촬영한 RGB 이미지와 Depth 이미지를 이용하여 3D 키포인트를 추정한다. RGB 이미지는 2D 키포인트 탐지기를 이용하여 2차원 공간에서의 좌표를 탐지한다. 앞서 탐지한 2D 좌표를 Depth 이미지에 투영하여 추출한 3D 키포인트의 깊이 값을 이용하여 3D 키포인트 탐지에 대한 연구 개발하였다.

  • PDF