• 제목/요약/키워드: Human intelligence

검색결과 1,168건 처리시간 0.025초

PLAYMAKER2, 전문가 시스템을 이용한 동해 울릉분지 남부 신생대 후기 퇴적층의 퇴적환경 해석 (Interpretation of depositional setting and sedimentary facies of the late Cenozoic sediments in the southern Ulleung Basin margin, East Sea(Sea of Japan), by an expert system, PLAYMAKER2)

  • 정대교
    • 한국석유지질학회지
    • /
    • 제6권1_2
    • /
    • pp.20-24
    • /
    • 1998
  • 전문가 시스템(expert system)은 충분한 지식과 경험을 가지고 있는 한 분야의 전문가가 실제로 문제에 접근 해결해 나가는 방식대로 전산 시스템을 구성하여 이러한 시스템을 통해 컴퓨터가 대신 문제를 해결하도록 제작된 인공지능 방식의 한 소프트웨어이다. 이번 연구에서는 퇴적층의 퇴적상과 퇴적환경 분석을 위해 미국 사우스 캐롤라이나 대학에서 본래 1990년에 개발되었던 PLAYMAKER의 지식베이스의 일부를 새로 수정 보완하여 제작한 PLAYMAKER2를 활용하여 퇴적층의 퇴적상과 퇴적환경을 분석하였다. 연구대상은 동해 울릉분지 남서부 제 VI-1 광구에 분포하는 최대 층후 10,000 m에 달하는 신생대 후기 퇴적층으로서, 이 곳의 퇴적층은 크게 상·하부 두 부분-마이오세충과 플라이오-플라이스토세층-으로 구분된다. PLAYMAKER2에 의해 분석되어 신뢰값으로 표시된 신생대 후기 퇴적층에 대한 퇴적환경과 퇴적상해석 결과를 요약해 보면, 마이오세층의 퇴적환경은 사면: $57.4\%$, 연안: $21.4\%$, 대양저: $10.1\%$의 순이고, 퇴적상은 해저 선상지: $35.7\%$, 대륙사면: $26.3\%$, 삼각주: $16.1\%$, 심해저 평원: $6.1\%$, 대륙붕: $3.2\%$, 대륙붕단: $1.4\%$ 순이다. 또한 플라이오-플라이스토세층에 대한 PALYMAKER2의 해석 결과는 퇴적환경은 사면: $59.0\%$, 연안: $22.8\%$, 대양저: $7.0\%$의 순이고, 퇴적상은 삼각주: $24.1\%$, 대륙사면: $22.2\%$, 해저 선상지: $17.3\%$, 대륙붕: $7.0\%$, 심해저 평원: $4.8\%$, 대륙붕단: $2.6\%$ 순이다. PLAYMAKER2에 의한 마이오세층과 플라이오-플라이스토세층에 대한 퇴적환경과 퇴적상 해석결과와 기존 연구자들에 의한 고전적인 퇴적상 해석 결과를 비교해 보면 두 퇴적층 모두 큰 차이를 보이지 않는데 이는 PLAYMAKER2전문가 시스템이 비교적 양호하게 퇴적층의 퇴적환경과 퇴적상을 해석할 수 있음을 보여주는 것으로 평가된다. 다만 PLAYMAKER2가 보다 신뢰할 만한 퇴적환경 해석을 위한 전문가 시스템으로 구축되기 위해서는 향후 많은 퇴적학 전문가들이 추가로 참여하여 기존 규칙들을 재검증하고 새로운 규칙들을 첨가함으로써 보디 세련된 지식베이스를 개발하여야 할 것으로 판단된다.

  • PDF

동태적 기술수준 측정 방법에 대한 이론적 접근 : 차세대성장동력 기술의 사례분석 (A theoretical approach and its application for a dynamic method of estimating and analyzing science and technology levels : case application to ten core technologies for the next generation growth engine)

  • 박병무
    • 기술혁신학회지
    • /
    • 제10권4호
    • /
    • pp.654-686
    • /
    • 2007
  • 과학기술 수준을 정확히 측정 분석하기 위해서는 우리 기술수준과 비교대상의 위치, 그리고 해당 기술의 이론적인 상한 수준을 우선 전제해야만 한다. 그리고 각각의 기술변화 정도를 파악하는 것이 추가적으로 필요하다. 우리나라 및 비교대상에 대한 동태적 측면이 고려되어 현재의 위치와 함께 과정과 경로도 중요시 되어야 한다. 이를 위해서 이 연구는 기술발전 단계와 성장곡선 개념을 활용하는 방안을 제시한다. 이론적 및 가상적 사례 적용 결과, 우리나라 기술수준의 향상은 뚜렷하게 보이고 있으나 같은 기간에 지속적으로 변화하고 있는 세계최고기술 수준과는 여전히 격차가 존재하는 것으로 추정된다. 추정 결과가 사실이라고 가정할 경우, 우리나라 기술의 실질적인 추격의 가능성은 그리 크지 않은 것으로 보인다. 특히, 바이오신약 장기 분야와 지능형로봇 분야의 경우에는 세계최고기술 수준과의 격차기간이 더욱 벌어지고 있는 것으로 추정되어 해당 분야에 대한 실질적이고, 심층적인 검토 및 분석이 시급히 요구된다. 이 연구는 기술수준 측정과 분석을 성장곡선 유형의 추정을 통해 위상분석과 변화과정을 파악하여 궁극적인 추격의 가능성을 제시한다. 이론적 타당성과 현실적 적용성에 대한 검증을 위해 향후 구체적인 사례분석이 필요하다.

  • PDF

스마트 TV 환경에서 정보 검색을 위한 사용자 프로파일 기반 필터링 방법 (A User Profile-based Filtering Method for Information Search in Smart TV Environment)

  • 신위살;오경진;조근식
    • 지능정보연구
    • /
    • 제18권3호
    • /
    • pp.97-117
    • /
    • 2012
  • 인터넷 사용자는 비디오를 보면서 소셜 네트워크 서비스를 이용하고 웹 검색을 하고, 비디오에 나타난 상품에 관심이 있을 경우 검색엔진을 통해 정보를 찾는다. 비디오와 사용자의 직접적인 상호작용을 위해 비디오 어노테이션에 대한 연구가 진행되었고, 스마트 TV 환경에서 어노테이션 된 비디오가 활용될 경우 사용자는 객체에 대한 링크를 통해 원하는 상품의 정보를 쉽게 확인할 수 있게 된다. 사용자가 상품에 대한 구매를 원할 경우 상품에 대한 정보검색 이외에 상품평이나 소셜 네트워크 친구의 의견을 통해 구매 결정을 한다. 소셜 네트워크로부터 발생되는 정보는 다른 정보에 비해 신뢰도가 높아 구매 결정에 큰 영향을 미친다. 하지만 현재 소셜 네트워크 서비스는 의견을 얻고자 할 경우 모든 소셜 네트워크 친구들에게 전달되고 많은 의견을 얻게 되어 이들로부터 유용한 정보를 파악하는 것은 쉽지 않다. 본 논문에서는 소셜 네트워크 사용자의 프로파일을 기반으로 상품에 대해 유용한 정보를 제공할 수 있는 친구를 규명하기 위한 필터링 방법을 제안한다. 사용자 프로파일은 페이스북의 사용자 정보와 페이스북 페이지의 'Like' 정보를 이용하여 구성된다. 프로파일의 상품 정보는 GoodRelations 온톨로지와 BestBuy 데이터를 이용하여 의미적으로 표현된다. 사용자가 비디오를 보면서 상품 정보를 얻고자 할 경우 어노테이션된 URI를 이용하여 정보가 전달된다. 시스템은 소셜 네트워크 친구들에 대한 사용자 프로파일과 BestBuy를 기반으로 어노테이션된 상품에 대한 의미적 유사도를 계산하고 유사도 값에 따라 순위가 결정한다. 결정된 순위는 유용한 정보를 제공할 수 있는 소셜 네트워크 상의 친구를 규명하는데 사용된다. 참가자의 동의하에 페이스북 정보를 활용하였고, 시스템에 의해 도출된 결과와 참가자 인터뷰를 통해 평가된 결과를 이용하여 타당성을 검증하였다. 비교 실험의 결과는 제안하는 시스템이 상품 구매결정을 하기 위해 유용한 정보를 획득할 수 있는 방법임을 증명한다.

다중 지문 시퀀스를 이용한 스마트폰 보안 (Smartphone Security Using Fingerprint Password)

  • 배경율
    • 지능정보연구
    • /
    • 제19권3호
    • /
    • pp.45-55
    • /
    • 2013
  • 최근 모바일 디바이스와 휴대기기의 발달로 원격접속이 늘어남에 따라 보안의 중요성도 점차 증가되었다. 그러나 기존 패스워드나 패턴과 같은 보안 프로그램은 지나치게 단순할 뿐 아니라 다른 사용자가 쉽게 취득하여 악용할 수 있다는 단점이 있다. 생체인식을 활용한 보안 시스템은 보안성이 강화 되었지만 위조 및 변조가 가능하기 때문에 완전한 해결책을 제시하지 못한다. 본 논문에서는 이러한 문제점을 해결하기 위해 지문인식과 패스워드를 결합하여 보안성을 향상시킬 수 있는 방안을 연구하였다. 제안한 시스템은 하나의 지문이 아니라 다수의 지문을 이용하는 방법으로, 사용자가 패스워드를 입력할 때 여러 지문 중에서 정확한 지문의 순서를 제공하도록 한다. 오늘날 스마트폰은 패스워드나 패턴, 지문을 이용할 수 있지만 패스워드의 강도가 낮거나 패턴이 쉽게 노출되는 등의 문제가 있다. 반면에 제안한 시스템은 다양한 지문의 이용과 패스워드의 연계, 또는 다른 생체인식 시스템과 연결함으로써 매우 강력한 보안장치가 될 수 있다.

데이터마이닝을 이용한 허위거래 예측 모형: 농산물 도매시장 사례 (Detection of Phantom Transaction using Data Mining: The Case of Agricultural Product Wholesale Market)

  • 이선아;장남식
    • 지능정보연구
    • /
    • 제21권1호
    • /
    • pp.161-177
    • /
    • 2015
  • 정보기술의 빠른 진화, 빅데이터의 등장, 분석기법의 고도화 등으로 인해 다량의 데이터로부터 의미있는 정보를 추출하는 데이터마이닝을 다양한 영역에 활용하고자 하는 시도들이 활발히 진행되고 있다. 그 중의 한 분야가 농산물 유통영역인데, 농산물에 대한 지속적인 수요 증가와 전자경매의 활성화 등으로 수도권 농산물 도매시장에서만도 연간 수천만건 이상의 거래가 이루어 진다. 그러나 급속한 거래량 증가와 더불어 과거로부터 관행적으로 이루어지고 있는 부정거래도 함께 증가하고 있는데 거래참가자들 사이의 결탁에 의해 발생하는 농산물 도매시장의 부정거래는 점차 지능화되는 추세이며, 이들을 감지하고 적발하기가 매우 어려운 실정이다. 이로 인해 농산물 유통환경의 공정거래 질서는 침해되고 시장에 대한 신뢰는 훼손되곤 한다. 따라서 거래투명성을 제고하고 유통비리를 구조적으로 개선하기 위한 과학적이고 자동화된 부정탐지시스템의 필요성이 어느 때보다도 절실히 요구되는 상황이다. 본 연구에서는 데이터마이닝의 의사결정나무를 이용하여 실제 발생하지 않은 거래를 실물 없이 거래한 것처럼 조작하여 대금을 정산하는 행위인 허위거래를 탐지하는 모형을 제시하였다. 이를 위해 실제 농산물 도매시장의 데이터를 수집하였고, 데이터의 정제 및 표준화 등의 선행작업을 수행하였다. 또한 변수 간의 상관관계 및 분포도 분석 등을 통해 데이터의 특성을 파악한 후 예측모형을 구축하여 허위거래와 정상거래를 분류하는 패턴을 도출하였으며, 최종적으로 시험용 데이터를 이용하여 모형을 평가하는 단계를 거쳐 결과의 적합성을 확인하였다. 향후 데이터마이닝을 이용한 부정탐지 모형을 허위거래뿐만 아니라 낙찰부정, 경매조작 등과 같이 다양화되는 부정거래에 적용하게 되면 보다 지대한 효과를 거둘 수 있으리라 사료된다.

인터넷 주의효과: 능동적 정보 검색이 투자 결정에 미치는 영향에 관한 연구 (Attention to the Internet: The Impact of Active Information Search on Investment Decisions)

  • 장영봉;권영옥;조우제
    • 지능정보연구
    • /
    • 제21권3호
    • /
    • pp.117-129
    • /
    • 2015
  • 인터넷을 활용한 정보 검색이 보편화됨에 따라, 상대적으로 정보가 부족했던 개인 투자자들이 인터넷 검색을 통해서 관심 기업의 정보를 지속적으로 '주의(attention)'하고 이를 통하여 시의 적절하고 유용한 정보를 획득할 수 있게 되었다. 본 연구에서는 능동적 정보검색을 통해 유도된 주의 효과가 투자자에게 정보전달의 역할을 하는지 개별 기업 주식의 변동성과 동조화를 중심으로 규명하고자 한다. 특히 기업의 본질적 가치에 대한 정보획득 및 판단이 쉽지 않은 정보기술 서비스 중심의 IT 기업을 대상으로 최근 10년간의 키워드 검색 데이터를 분석하였다. 분석 결과, 인터넷 검색을 통한 기업정보의 수집 및 확산의 용이성은 투자자가 기업의 가치를 보다 정확히 평가하는데 도움을 주고 결과적으로 시장에서의 탈동조화를 유인함을 알 수 있다. 즉, 투자자의 주의는 시장에 내재된 불완전성에 의해 본질적인 요소와 상관없이 주식들의 수익률이 동시에 같은 방향으로 움직이는 동조화 현상을 약화시키는데 영향을 미쳤다. 이러한 결과는 기업 규모가 클수록, 연도별 분석에서는 최근에 가까울수록 더 크게 영향을 미치는 것으로 나타났다. 잘 알려진 기업일수록 인터넷 검색으로 획득할 수 있는 정보의 양이 많고, 또한 시간이 지날수록 정보가 쌓이면서 이러한 현상은 더 심화될 것으로 예측할 수 있다. 반면, 인터넷 검색량과 기업의 변동성은 규모가 큰 기업의 경우에만 유의한 양의 관계를 보여주었다. 본 연구는 투자자의 주의효과를 인터넷 검색량을 이용하여 실증 분석하였다는데 의의가 있으며, 연구 결과는 기업 주식의 변동성 및 동조화 현상에 대한 이해를 높이고 투자자의 투자결정에 도움이 될 것으로 기대된다.

전시 공간에서 다중 인터랙션을 위한 개인식별 위치 측위 기술 연구 (The Individual Discrimination Location Tracking Technology for Multimodal Interaction at the Exhibition)

  • 정현철;김남진;최이권
    • 지능정보연구
    • /
    • 제18권2호
    • /
    • pp.19-28
    • /
    • 2012
  • 전시 공간에서 관객들의 반응에 따른 다중 인터랙션 서비스를 제공하기 위해서는 관람객의 정확한 위치 및 이동 경로를 얻기 위한 위치 추적 기술이 필요하다. 실외 환경에서 위치 추적을 위한 기술로 GPS가 현재 널리 사용되고 있다. GPS는 빠른 속도로 이동하는 이동체의 위치를 실시간으로 파악할 수 있으므로 위치 추적 서비스(Location Tracking Service)를 요구하는 분야에서 중요한 기술로 활용된다. 하지만 위성을 이용한 위치 추적 기법을 사용하기 때문에 위성 신호를 잡을 수 없는 실내에서는 사용할 수 없다는 단점이 있다(Per Enge et al., 1996). 위와 같은 이유로 Wi-Fi 위치 측위 기술을 비롯하여 ZigBee, UWB, RFID 등의 초단거리 통신 기술 등 다양한 형태의 실내 위치 측위 연구가 진행되고 있다(Schiler and Voisad, 2004). 하지만 이러한 기술들은 전시 공간에서 얻고자 하는 위치정보의 밀도가 높아질수록 구현의 난이도가 높아지고 구축 및 관리 비용도 커지며 구축 가능한 환경이 제약된다는 단점이 있다. 이와 같은 문제를 해결하기 위하여 본 논문에서는 실내 환경에서 스마트폰을 이용한 Wi-Fi 위치 측위 데이터를 기반으로 하여 3D카메라의 Depth Map 정보와의 매핑을 통해 사용자들을 식별하고 위치를 추적하는 시스템을 제안한다.

대화식 데이터 마이닝 기법을 활용한 자동차 보험사의 인입 콜량 예측 사례 (A Case Study on Forecasting Inbound Calls of Motor Insurance Company Using Interactive Data Mining Technique)

  • 백웅;김남규
    • 지능정보연구
    • /
    • 제16권3호
    • /
    • pp.99-120
    • /
    • 2010
  • 최근 고객들의 비대면 접점 서비스 이용도가 높아짐에 따라, 비대면 채널은 다양한 데이터의 분석을 통해 고객 만족도를 향상시킬 수 있는 유용한 창구로 인식되고 있다. 이러한 비대면 채널의 대표적 영역으로 콜센터를 들 수 있으며, 콜센터 운영에서 고객 만족도에 가장 큰 영향을 미치는 요소는 상담 인력의 규모인 것으로 알려져 있다. 즉, 일정수준 이상의 고객 만족도를 유지하기 위해서는 충분한 상담 인력을 확보하는 것이 관건이지만, 불필요하게 많은 인력을 확보하는 것은 인건비 측면에서 비용의 낭비를 초래할 수 있다. 따라서 부족하지도 않고 넘치지도 않을 정도의 적정 인력을 산출하는 능력은 콜센터 운영의 핵심 경쟁력으로 인식되고 있으며, 최근 콜센터에서는 적정 인력의 규모를 예측하기 위해 WFM(Work Force Management) 업무 전담 부서를 설치하고 콜량을 정확하게 예측하기 위한 노력을 기울이고 있다. 콜량 예측을 위해 현업에서 주로 사용되는 방법은 담당자의 직관에 의존하는 방법으로, 일정기간의 콜량 평균을 담당자가 주관적 판단에 의해 보정함으로써 이루어진다. 하지만 이러한 방식은 담당자의 주관적 성향에 크게 좌우된다는 한계를 갖고 있어서, 최근에는 다양한 예측 모형을 시스템화한 WFMS(Workforce Management System) 패키지가 널리 활용되고 있다. 하지만 이 시스템은 초기 도입 시 매우 고가의 구축비용이 발생하며, 신규 요인 발굴 시 이를 즉각적으로 시스템에 반영하기 어렵다는 한계점을 갖고 있다. 이를 극복하기 위해 본 연구에서는 데이터 마이닝의 대화식 의사결정나무 기법을 이용함으로써, 객관적이면서도 업무 배경 지식을 충분히 활용할 수 있는 예측 모형을 수립하고자 한다. 또한, 본 연구에서 수립한 모형의 정확성 평가를 위해, 국내 최대 규모의 한 자동차 보험사 콜센터의 4년 8개월 간의 실 데이터를 사용한 실험을 수행하고 그 결과를 제시하였다. 실험에서는 기존의 WFMS와 본 연구에서 제안하는 두 가지 모형인 대화식 의사결정나무 기반의 예측 모형, 일반 의사결정나무 기반의 예측 모형의 세 가지 모형에 대해, 다양한 오차 허용범위 하에서의 사고콜 및 고장콜에 대한 예측 적중률을 평가하였다.

시뮬라시옹과 포스트-재현 - 알고리즘 아트를 중심으로 (Simulation and Post-representation: a study of Algorithmic Art)

  • 이수진
    • 기호학연구
    • /
    • 제56호
    • /
    • pp.45-70
    • /
    • 2018
  • 르네상스 이후부터 지속되어 온 재현체계에 관한 포스트모던 철학의 비판은 시각주체의 경험과 대상을 분리하고, 환경과 인간을 분리하는 이분법적인 사고체계에 관한 비판으로 궤를 같이 한다. 1960년대 포스트모던한 흐름으로 등장한 일련의 작품에서 강조된 상호작용성은 1990년대 후반 디지털 아트의 인터랙티브한 차원으로 계승되었다. 디지털 아트의 핵심적인 특성은 현장에서 관객의 참여에 따라 예측할 수 없는 결과 혹은 저마다의 미세한 변화를 반영한 무한대의 변이들을 만들어낸다는 점이다. 이 과정에서 컴퓨터 프로그램의 중요성이 부각되고, 기존 프로그램을 그대로 차용하는 것이 아니라, 아티스트가 직접 알고리즘을 작성하고 프로그래밍하는 경우 혹은 프로그래머와 협업을 통해 고유한 알고리즘을 만들어내는 경우가 점점 증가하고 있다. 프로그래밍 자체를 창작 행위로 간주해야 하는 패러다임으로 전환되는 중이라고 말할 수도 있겠다. 현재 주목받고 있는 시뮬레이션과 VR 기술은 현실의 감각과 시공간을 재현해내는 기술로 각광받고 있는데, 시뮬레이션 기술이 예술 분야에 도입되면서, 실험적인 작품들이 창작되는 중이다. 장 보드리야르가 제시한 시뮬라시옹 개념은 '어떤 현실을 본따 매우 사실적으로 만듦'을 대변하는 개념이라기보다는 '실재하는 현실과 어떤 관계를 맺고 있는 전혀 다른 현실'을 주목하게 만드는 개념이다. 이때 시뮬라시옹은 진실과 거짓의 문제를 따질 주제가 아니라, 형이상학적인 의미가 없는, 전통적인 실재와는 전혀 다른 성질의 실재를 지칭한다. 전통적인 질서에서 이미지가 실재 세계의 재현에 대응했다면, 알고리즘 아트의 시뮬레이션 이미지들 그리고 시뮬레이션된 시공간은 '체험을 용이하게 만드는 예술 형식'이라 할 수 있다. 다수의 알고리즘 아트는 상황, 현실, 생태계, 생명체 등의 복합적인 속성을 시스템으로 모델화하여 (특정 혹은 개별) 대상을 구조화하고 활성화하는 데 목표를 두고 있으며, 세계의 시뮬라시옹에 주목한다. 본 논문에서는 세계의 시뮬라시옹을 다루는 이안 쳉의 작품을 통해, 21세기 인공지능 기술의 등장과 함께 변화하고 있는 문화예술의 패러다임을 살펴보고자 한다. 또한 이안 쳉의 라이브 시뮬레이션과 같은 새로운 형식의 콘텐츠 앞에서 우리가 취해야 하는 태도 역시 논의하게 될 것이다. 사실 새로운 형식의 작품을 대면하는 순간은 전통적인 형식의 작품보다 훨씬 더 능동적인 입장을 요구한다. 본 논문이 제시하는 포스트-재현 형식의 문화예술 작품은 개인적인 경험의 순간에 이루어지는 감각과 지각 과정이 완성이나 종결로 수렴될 수 없음을 기술로 구현하고 있다. 이때 관객에게 요구되는 것은 바로 능동적 인식과 상황적 지식임을 이야기하고자 한다.

KB국민카드의 빅데이터를 활용한 실시간 CRM 전략: 스마트 오퍼링 시스템 (Real-time CRM Strategy of Big Data and Smart Offering System: KB Kookmin Card Case)

  • 최재원;손봉진;임현아
    • 지능정보연구
    • /
    • 제25권2호
    • /
    • pp.1-23
    • /
    • 2019
  • 소비자의 니즈가 다양해지면서 데이터 마이닝과 고도화된 고객관계관리(CRM) 기법을 활용한 체계적인 마케팅 서비스를 제공하는 기업이 증가하고 있으며, KB국민카드는 고객의 결제 데이터 등을 활용하여 고객 개개인의 니즈를 충족시키고 소비자의 평생가치를 극대화하기 위한 전략을 강조하고 있다. 실시간으로 고객의 카드이용과 고객 행동, 위치 정보 등을 감지하여 진행하는 고효율 마케팅 운영시스템인 스마트 오퍼링 시스템을 운영하고 있으며, 다양한 앱 등과 결합하여 더욱 정교화된 서비스를 제공하고 있다. KB국민카드는 스마트 오퍼링 시스템의 성공과 지속적인 성장을 위해 고도화되고 있는 ICT 기술과 인재 확보를 위한 투자를 진행해야 하며, 장기적인 관점에서의 수익확보를 위한 전략을 확립하여 체계적인 진행이 필요하다. 특히, 프라이버시 침해와 개인정보 유출 등의 문제가 쟁점이 되는 현재 상황에서 고객 정보를 활용한 마케팅에 대한 고객의 인식을 긍정적으로 유도하고, 보안성을 강조하는 기업 이미지 형성을 위한 노력이 필요하다. 본 연구는 CRM 전략의 변화 과정을 통해 현재 카드사의 실시간 CRM 전략을 KB 국민카드의 빅데이터 활용전략과 마케팅 활동을 통해 확인하고자 한다.