• Title/Summary/Keyword: Human in vitro model

Search Result 382, Processing Time 0.024 seconds

Establishment of in vitro 3-Dimensional Tumor Model for Evaluation of Anticancer Activity Against Human Solid Tumors (항고형암제의 활성평가를 위한 in vitro 삼차원 암세포 배양계의 확립)

  • Lee, Sang-Hak;Lee, Joo-Ho;Kuh, Hyo-Jeong
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.5
    • /
    • pp.393-399
    • /
    • 2004
  • For the efficient determination of activity against solid tumors, an in vitro tumor model that resembles the condition of in vivo solid tumors, is required. The purpose of this study was to establish a rapid culture method and viability assay for an in vitro 3-dimensional tumor model, multicellular spheroid (MCS). Among 12 human cancer cell lines, a few cell lines including DLD-1 (human colorectal carcinoma cells) formed fully compact MCS which was adequate for in vitro viability assay. DLD-1 MCS showed steady growth reaching $700\;{\mu}m$ diameter after 11 day culture. DLD-1 cells grown as MCS showed significant increase in $G_0/G_1$ phase compared to the monolayer cells (73.9% vs 45.7%), but necrotic regions or apoptotic cells were not observed. The cells cultured as MCS showed resistance to 5-FU (10.3 fold higher $IC_{50}$) compared to monolayers, however, tirapazamine (a hypotoxin) showed similar activity in both culture systems. In summary, MCS may be a valid in vitro model for activity screening of anticancer agents against human solid tumors and also exploitable for studying molecular markers of drug resistance in human solid tumors.

Pre-clinical Screening Methods for Evaluating Anti-wrinkle Effect

  • Cho Moon Kyun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.29 no.2 s.43
    • /
    • pp.37-65
    • /
    • 2003
  • Nowadays, we find out new anti-wrinkle-care-ingredients by in vitro searching methods using many kind of cell-culture-models for investigation of the effective anti-wrinkle-care-ingredients. But, theses new ingredients don't have effect on the human-model for anti-wrinkle, not likely on in vitro. In other words, there are so many differences between the effects on in vitro models and the clinical human models, practically. But, we actually have difficulty in putting all of the new anti-wrinkle-care-ingredients to the test on human models directly. To solve this problem, we have investigated that by using the artificial skin-culture-model or the animal model, In this lecture I will review the detail of assessment method far evaluation of anti-wrinkle agents in vitro and animal model and discuss the pros and cons of each method. Then I will present the results of Preclinical Screening trials, And especially animal model may be a good candidate for evaluation of anti-wrinkle agents.

Carcinogenic Potentials of HPV-16 and NNK in Human in Vitro Model (인체 세포 모델을 이용한 HPV-16과 NNK의 발암 잠재력에 관한 연구)

  • 양재호;이세영
    • Toxicological Research
    • /
    • v.12 no.2
    • /
    • pp.271-275
    • /
    • 1996
  • Carcinogenic potential of HPV-16 DNA and NNK in a human keratinocyte cell line was assessed to study effects of viral-chemical interaction. Human cells were transfected with HPV-16 DNA and 6 clonal cell lines were subsequently obtained. Clonal line-3 and 6 at passage 7 showed characteristics of tumor cells such as increases of saturation density, soft-agar colony formation, cell aggregation and foci appearance. Among cells treated with 1$\mu M$, 10$\mu M$, 100$\mu M$ or 1 mM of NNK for 4 weeks, 100$\mu M$ treatment showed most tumorigenic characteristics at passage 7. These results indicate that either HPV-16 or NNK alone is tumorigenic in this in human in vitro model. When cells transfected with HPV-16 were subsequently exposed by 100 uM NNK for 4 weeks, all the clonal cells except clone-1 showed higher levels of tumor cell characteristics than HPV-16 DNA or NNK exposure alone. Clonal line-6, the most tumorigenic cells, showed higher transcriptional level of fibronectin and lower level of TGF-$\beta_1$, as compared to control cells, suggesting that alteration of growth factor or extracellular matrix may play a role in carcinogenesis process induced by HPV-16 and NNK. Taken together, the present study indicates that viral-chemical interactions between HPV-16 DNA and NNK enhance carcinogenic potentials of human cells and implies that smoking among people infected with human papillomavirus may pose an additional risk of causing cancer.

  • PDF

Determination of Water Content in Skin by using a FT Near Infrared Spectrometer

  • Suh Eun-Jung;Woo Young-Ah;Kim Hyo-Jin
    • Archives of Pharmacal Research
    • /
    • v.28 no.4
    • /
    • pp.458-462
    • /
    • 2005
  • The water content of skin was determined using a FT near infrared (NIR) spectrometer. NIR diffuse reflectance spectra were collected from hairless mouse, in vitro, and from human inner arm, in vivo. It was found that the variation of NIR absorbance band 1450 nm from OH vibration of water and 1940 nm from the combination involving OH stretching and OH deformation, depending on the absolute water content of separated hairless mouse skin, in vitro, using the FT NIR spectrometer. Partial least squares regression (PLSR) was applied to develop a calibration model. The PLS model showed good correlation. For practical use of the evaluation of human skin moisture, the PLS model for human skin moisture was developed in vivo on the basis of the relative water content of stratum corneum from the conventional capacitance method. The PLS model predicted human skin moisture with a standard errors of prediction (SEP) of 3.98 at 1130-1830 nm range. These studies showed the possibility of a rapid and nondestructive skin moisture measurement using FT NIR spectrometer.

In vitro Skin Irritation Test of Honeypolis using Human Skin Model

  • Woo, SoonOk;Han, Sangmi;Hong, Inpyo;Kim, Sung-kuk
    • Journal of Apiculture
    • /
    • v.33 no.4
    • /
    • pp.277-282
    • /
    • 2018
  • Ethanol extracted propolis (EEP) was mixed with honey (honeypolis) to dissolve well in water and in vitro skin irritation test was conducted. In vitro method is designed to predict and classify the skin irritation potential of a chemical by assessment of its effect on $EpiDerm^{TM}$, a reconstituted three-dimensional human epidermis model. Cytotoxicity is expressed as the reduction of mitochondrial dehydrogenase activity measured by formazan production from MTT after a 60 min exposure period. In this study under the given conditions honeypolis showed no irritant effects. Honeypolis meets acceptance criteria if: mean absolute OD 570 nm of the three negative control tissues is ${\geq}0.8$ and ${\leq}2.8$, mean relative tissue viability of the three positive control tissues is ${\leq}20%$, standard deviation of relative tissue viability obtained from each three concurrently tested tissues is ${\leq}18%$. Honeypolis is therefore classified as "non-irritant" in accordance with UN GHS "No Category".

Comparison of Caco-2 and MDCK Cells As an In-Vitro ADME Screening Model (In-Vitro 흡수특성 검색모델로서 Caco-2 및 MDCK 세포배양계의 특성 비교 평가)

  • Go, Woon-Jung;Cheon, Eun-Pa;Han, Hyo-Kyung
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.3
    • /
    • pp.183-189
    • /
    • 2008
  • The present study compared the feasibility of Caco-2 and MDCK cells as an efficient in-vitro model for the drug classification based on Biopharmaceutics Classification System (BCS) as well as an in-vitro model for drug interactions mediated by P-gp inhibition or P-gp induction. Thirteen model drugs were selected to cover BCS Class I{\sim}IV$ and their membrane permeability values were evaluated in both Caco-2 and MDCK cells. P-gp inhibition studies were conducted by using vinblastine and verapamil in MDCK cells. P-gp induction studies were also performed in MDCK cells using rifampin and the P-gp expression level was determined by western blot analysis. Compared to Caco-2 cells, MDCK cells required shorter period of time to culture cells before running the transport study. Both Caco-2 and MDCK cells exhibited the same rank order relationship between in-vitro permeability values and human permeability values of all tested model compounds, implying that those in-vitro models may be useful in the prediction of human permeability (rank order) of new chemical entities at the early drug discovery stage. However, in the case of BCS drug classification, Caco-2 cells appeared to be more suitable than MDCK cells. P-gp induction by rifampin was negligible in MDCK-cells while MDCK cells appeared to be feasible for P-gp inhibition studies. Taken all together, the present study suggests that Caco-2 cells might be more applicable to the BCS drug classification than MDCK-cells, although MDCK cells may provide some advantage in terms of capacity and speed in early ADME screening process.

Demethoxycurcumin from Curcuma longa Rhizome Suppresses iNOS Induction in an in vitro Inflamed Human Intestinal Mucosa Model

  • Somchit, Mayura;Changtam, Chatchawan;Kimseng, Rungruedi;Utaipan, Tanyarath;Lertcanawanichakul, Monthon;Suksamrarn, Apichart;Chunglok, Warangkana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1807-1810
    • /
    • 2014
  • Background: It is known that inducible nitric oxide synthase (iNOS)/nitric oxide (NO) plays an integral role during intestinal inflammation, an important factor for colon cancer development. Natural compounds from Curcuma longa L. (Zingiberaceae) have long been a potential source of bioactive materials with various beneficial biological functions. Among them, a major active curcuminoid, demethoxycurcumin (DMC) has been shown to possess anti-inflammatory properties in lipopolysaccharide (LPS)-activated macrophages or microglia cells. However, the role of DMC on iNOS expression and NO production in an in vitro inflamed human intestinal mucosa model has not yet been elucidated. This study concerned inhibitory effects on iNOS expression and NO production of DMC in inflamed human intestinal Caco-2 cells. An in vitro model was generated and inhibitory effects on NO production of DMC at 65 ${\mu}M$ for 24-96 h were assessed by monitoring nitrite levels. Expression of iNOS mRNA and protein was also investigated. DMC significantly decreased NO secretion by 35-41% in our inflamed cell model. Decrease in NO production by DMC was concomitant with down-regulation of iNOS at mRNA and protein levels compared to proinflammatory cytokine cocktail and LPS-treated controls. Mechanism of action of DMC may be partly due to its potent inhibition of the iNOS pathway. Our findings suggest that DMC may have potential as a therapeutic agent against inflammation-related diseases, especially in the gut.

In vitro Nasal Cell Culture Systems for Drug Transport Studies

  • Cho, Hyun-Jong;Termsarasab, Ubonvan;Kim, Jung-Sun;Kim, Dae-Duk
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.6
    • /
    • pp.321-332
    • /
    • 2010
  • Growing interest in the nasal route as a drug delivery system calls for a reliable in vitro model which is crucial for efficiently evaluating drug transport through the nasal cells. Various in vitro cell culture systems has thus been developed to displace the ex vivo excised nasal tissue and in vivo animal models. Due to species difference, results from animal studies are not sufficient for estimating the drug absorption kinetics in humans. However, the difficulty in obtaining reliable human tissue source limits the use of primary culture of human nasal epithelial cells. This shortage of human nasal tissue has therefore prompted studies on the "passage" culture of nasal epithelial cells. A serially passaged primary human nasal epithelial cell monolayer system developed by the air-liquid interface (ALI) culture is known to promote the differentiation of cilia and mucin gene and maintain high TEER values. Recent studies on the in vitro nasal cell culture systems for drug transport studies are reviewed in this article.

In Vitro Effects of Cooking Methods on Digestibility of Lipids and Formation of Cholesterol Oxidation Products in Pork

  • Hur, Sun Jin;Lee, Seung Yuan;Moon, Sung Sil;Lee, Seung Jae
    • Food Science of Animal Resources
    • /
    • v.34 no.3
    • /
    • pp.280-286
    • /
    • 2014
  • This study investigated the effects of cooking methods on the digestibility of lipids and formation of cholesterol oxidation products (COPs) in pork, during in vitro human digestion. Pork patties were cooked using four different methods (oven cooking, pan frying, boiling, and microwaving), to an internal temperature of approximately $85^{\circ}C$. The digestibility of pork patties were then evaluated, using the in vitro human digestion model that simulated the composition (pH, minerals, surfaceactive components, and enzymes) of digestive juices in the human mouth, stomach, and small intestine. The total lipid digestibility was higher after microwave cooking, whereas pan-frying resulted in lower in vitro digestibility, compared to the other cooking methods. The microwaving method followed by in vitro digestion also showed significantly higher content of free fatty acids and thiobarbituric acid reactive substances (TBARS), compared to the other cooking methods; whereas, the pan frying and boiling methods showed the lowest. Cholesterol content was not significantly different among the cooked samples before, and after in vitro human digestion. The formation of COPs was significantly higher in the microwave-treated pork samples, compared to those cooked by the other methods, which was consistent with the trend for lipid peroxidation (TBARS). We propose that from the point of view of COPs formation and lipid oxidation, the pan-frying or boiling methods would be useful.

Assessment of the Dermal and Ocular Irritation Potential of Lomefloxacin by Using In Vitro Methods

  • Ahn, Jun-Ho;Eum, Ki-Hwan;Lee, Mi-Chael
    • Toxicological Research
    • /
    • v.26 no.1
    • /
    • pp.9-14
    • /
    • 2010
  • The evaluation of eye and skin irritation potential is essential to ensuring the safety of human in contact with a wide variety of substances. Despite this importance of irritation test, little is known with respect to the irritation potency of lomefloxacin, a fluoroquinolone antibiotic, which has been known to cause phototoxicity with an abnormal reaction of the skin. Thus, to investigate the tendency of lomefloxacin to cause eye and skin irritation, we carried out in vitro eye irritation test using Balb/c 3T3, and in vitro skin irritation test using $KeraSkin^{TM}$ human skin model system. 3T3 neutral red uptake assay has been proposed as a potential replacement alternative for the Draize Eye irritation test. In this study, the $IC_{50}$ value obtained for lomefloxacin was 375 ${\mu}g$. According to the classification model used for determining in vitro categories, lomefloxacin was classified as moderately irritant. For evaluation of skin irritation, engineered epidermal equivalents ($KeraSkin^{TM}$) were subjected to 10 and 25 mg of lomefloxacin for 15 minutes. Tissue damage was assessed by tissue viability evaluation, and by the release of a pro-inflammatory mediator, interleukin- 1${\alpha}$. Lomefloxacin increased the interleukin-1${\alpha}$ release after 15 minutes of exposure and 42 hours of post incubation, although no decrease in viability was observed. Therefore, lomefloxacin is considered to be moderately irritant to skin and eye.