• Title/Summary/Keyword: Human hepatocellular carcinoma

Search Result 238, Processing Time 0.024 seconds

MiR-675 Promotes the Growth of Hepatocellular Carcinoma Cells Through Cdc25A Pathway

  • Yu, Ya-Qun;Weng, Jun;Li, Shu-Qun;Li, Bo;Lv, Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.8
    • /
    • pp.3881-3885
    • /
    • 2016
  • Background: MicroRNAs (miRNAs) have fundamental roles in tumorigenesis. MiR-675 is upregulated in hepatocellular carcinoma(HCC) cells. However, the roles of miR-675 in hepatocellular carcinogenesis are still not fully elucidated. In this study, we focus on investigating the effect and mechanism of miR-675 in proliferation of HCC cells. Materials and Methods: The cell proliferation was measured by MTT assays after transfection with miR-675 inhibitor and miR-675 mimics in HCC cells. The expression level of miR-675 was detected by real-time quantitative reverse transcription polymerase chain reaction. Protein expression of Cdc25A was measured by western blotting analysis. Results: In MTT assays, overexpression of miR-675 promoted the proliferation of HCC cells(P<0.05. at 48 hours, P<0.01. at 72 hours) compared with the miR-675mimics control group. Downexpression of miR-675 inhibited the proliferation of HCC cells(P<0.05. at 48 hours, P<0.01. at 72 hours) compared with the miR-675inhibitor control group. In western blotting analysis, the expression level of Cdc25A was significantly increased (p<0.05) after treatment with miR-675 mimics. The expression level of Cdc25A was significantly decreased (p<0.05) after treatment with miR-675 inhibitor. Conclusions: Our results indicate that miR-675 promotes the proliferation in human hepatocellular carcinoma cells by associating with Cdc25A signaling pathway.

Molecular Aspects of Hepatitis B Viral Infection and the Viral Carcinogenesis

  • Ryu, Wang-Shick
    • BMB Reports
    • /
    • v.36 no.1
    • /
    • pp.138-143
    • /
    • 2003
  • Of many viral causes of human cancer, few are of greater global importance than the hepatitis B virus (HBV). Over 250 million people worldwide are persistently infected with HBV. A significant minority of these develop severe pathologic consequences, including chronic hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). Earlier epidemiological evidence suggested a link between chronic HBV infection and HCC. Further, the existence of related animal viruses that induce acute and chronic infections of the liver, and eventually HCC, confirms the concept that HBV belongs to one of the few human oncogenic viruses. Although it is clear that chronic HBV infections are major risk factors, relatively little is understood about how the viral factors contribute to hepatocarcinogenesis. This review will introduce molecular aspects of the viral infection, and highlight recent findings on the viral contribution to hepatocarcinogenesis.

The Antiproliferative Effects of Bile Acids and Their Derivatives on HepG2 Human Hepatocellular Carcinoma Cells

  • Park, Hwa-Sun;Yee, Su-Bog;Choi, Hye-Joung;Chung, Sang-Woon;Park, Sang-Eun;Yoo, Young-Hyun;Kim, Nam-Deuk
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.245.2-246
    • /
    • 2002
  • We studied on the antiproliferative effects of bile acids and their derivatives on HepG2 human hepatocellular carcinoma cells. Ursodeoxycholic acid (UDCA) and its synthetic derivative HS-1030. and chenodeoxycholic acid (CDCA) and its synthetic derivatives. HS-1199 and HS\ulcorner200, were used. We focused on the regulation of cell cycle and induction of apoptosis by these bile acid derivatives. (omitted)

  • PDF

In silica Prediction of Angiogenesis-related Genes in Human Hepatocellular Carcinoma

  • Kang, Seung-Hui;Park, Jeong-Ae;Hong, Soon-Sun;Kim, Kyu-Won
    • Genomics & Informatics
    • /
    • v.2 no.3
    • /
    • pp.134-141
    • /
    • 2004
  • Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide and a typical hypervascular tumor. Therefore, it is important to find factors related to angiogenesis in the process of HCC malignancy. In order to find angiogenesis-related factors in HCC, we used combined methods of in silico prediction and an experimental assay. We analyzed 1457 genes extracted from cDNA microarray of HCC patients by text-mining, sequence similarity search and domain analysis. As a result, we predicted that 16 genes were likely to be involved in angiogenesis and then the effects of these genes were confirmed by hypoxia response element(HRE)-luciferase assay. For instant, we classified osteopontin into a potent angiogenic factor and coagulation factor XII into a significant anti­angiogenic factor. Collectively, we suggest that using a combination of in silico prediction and experimental approaches, we can identify HCC-specific angiogenesis­related factors effectively and rapidly.

MiR-371 promotes proliferation and metastasis in hepatocellular carcinoma by targeting PTEN

  • Wang, Hao;Zhao, Yi;Chen, Tingsong;Liu, Guofang;He, Nan;Hu, Heping
    • BMB Reports
    • /
    • v.52 no.5
    • /
    • pp.312-317
    • /
    • 2019
  • Hepatocellular carcinoma (HCC) is the leading cause of cancer-related mortality worldwide. MiR-371 has recently emerged as an important regulator in tumorigenesis, and may serve as a biomarker for malignant tumors. We transfected miR-371 or its inhibitor in two human HCC cell lines, then used 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, soft agar colony formation, and transwell migration assays to evaluate the effects on cell proliferation, migration, and invasion. We found that miR-371 was positively correlated with HCC metastasis and poor prognosis in the inflicted patients, and the high expression of miR-371 was promoted, whereas a low level of miR-371 depressed cell proliferation and invasion. We found PTEN to be a direct target of miR-371. The overexpression or knockdown of PTEN exhibited the opposite effects from those of miR-371 on cell proliferation and migration. Our study demonstrates that miR-371 promotes proliferation and metastasis in HCC by targeting PTEN.

C-terminal truncated HBx reduces doxorubicin cytotoxicity via ABCB1 upregulation in Huh-7 hepatocellular carcinoma cells

  • Jegal, Myeong-Eun;Jung, Seung-Youn;Han, Yu-Seon;Kim, Yung-Jin
    • BMB Reports
    • /
    • v.52 no.5
    • /
    • pp.330-335
    • /
    • 2019
  • Hepatitis B virus (HBV) encoding the HBV x protein (HBx) is a known causative agent of hepatocellular carcinoma (HCC). Its pathogenic activities in HCC include interference with several signaling pathways associated with cell proliferation and apoptosis. Mutant C-terminal-truncated HBx isoforms are frequently found in human HCC and have been shown to enhance proliferation and invasiveness leading to HCC malignancy. We investigated the molecular mechanism of the reduced doxorubicin cytotoxicity by C-terminal truncated HBx. Cells transfected with C-terminal truncated HBx exhibited reduced cytotoxicity to doxorubicin compared to those transfected with full-length HBx. The doxorubicin resistance of cells expressing C-terminal truncated HBx correlated with upregulation of the ATP binding cassette subfamily B member 1(ABCB1) transporter, resulting in the enhanced efflux of doxorubicin. Inhibiting the activity of ABCB1 and silencing ABCB1 expression by small interfering ribonucleic acid (siRNA) increased the cytotoxicity of doxorubicin. These results indicate that elevated ABCB1 expression induced by C-terminal truncation of HBx was responsible for doxorubicin resistance in HCC. Hence, co-treatment with an ABCB1 inhibitor and an anticancer agent may be effective for the treatment of patients with liver cancer containing the C-terminal truncated HBx.

STC2 is upregulated in hepatocellular carcinoma and promotes cell proliferation and migration in vitro

  • Wang, Haixiao;Wu, Kuangjie;Sun, Yuan;Li, Yandong;Wu, Mingyu;Qiao, Qian;Wei, Yuanjiang;Han, Ze-Guang;Cai, Bing
    • BMB Reports
    • /
    • v.45 no.11
    • /
    • pp.629-634
    • /
    • 2012
  • The human glycoprotein, stanniocalcin 2 (STC2) plays multiple roles in several tumor types, however, its function and clinical significance in hepatocellular carcinoma (HCC) remain unclear. In this study, we detected STC2 expression by quantitative real-time PCR and found STC2 was upregulated in HCC tissues, correlated with tumor size and multiplicity of HCC. Ectopic expression of STC2 markedly promoted HCC cell proliferation and colony formation, while silencing of endogenous STC2 resulted in a reduced cell growth by cell cycle delay in G0/G1 phase. Western blot analysis demonstrated that STC2 could regulate the expression of cyclin D1 and activate extracellular signal-regulated kinase 1/2 (ERK1/2) in a dominant-positive manner. Transwell chamber assay also indicated altered patterns of STC2 expression had an important effect on cell migration. Our findings suggest that STC2 functions as a potential oncoprotein in the development and progression of HCC as well as a promising molecular target for HCC therapy.

Bactericidal Application and Cytotoxic Activity of Biosynthesized Silver Nanoparticles with an Extract of the Red Seaweed Pterocladiella capillacea on the HepG2 Cell Line

  • El Kassas, Hala Yassin;Attia, Azza Ahmed
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.3
    • /
    • pp.1299-1306
    • /
    • 2014
  • Background: Nano-biotechnology is recognized as offering revolutionary changes in various fields of medicine. Biologically synthesized silver nanoparticles have a wide range of applications. Materials and Methods: Silver nanoparticles (AgNPs) were biosynthesized with an aqueous extract of Pterocladiella (Pterocladia) capillacea, used as a reducing and stabilizing agent, and characterized using UV-VIS spectroscopy, Fourier Transform Infra red (FT-IR) spectroscopy, transmission electron microscopy (TEM) and energy dispersive analysis (EDX). The biosynthesized AgNPs were tested for cytotoxic activity in a human hepatocellular carcinoma ($HepG_2$) cell line cultured in Dulbecco's modified Eagle medium supplemented with 10% fetal bovine serum, 1% antibiotic and antimycotic solution and 2 mM glutamine. Bacterial susceptibility to AgNPs was assessed with Staphylococcus aureus, Bacillus subtilis [Gram+ve] and Pseudomonas aeruginosa and Escherichia coli [Gram-ve]. The agar well diffusion technique was adopted to evaluate the bactericidal activity of the biosynthesized AgNPs using Ampicillin and Gentamicin as gram+ve and gram-ve antibacterial standard drugs, respectively. Results: The biosynthesized AgNPs were $11.4{\pm}3.52$ nm in diameter. FT-IR analysis showed that carbonyl groups from the amino acid residues and proteins could assist in formation and stabilization of AgNPs. The AgNPs showed potent cytotoxic activity against the human hepatocellular carcinoma ($HepG_2$) cell line at higher concentrations. The results also showed that the biosynthesized AgNPs inhibited the entire panel of tested bacteria with a marked specificity towards Bacillus subtillus. Conclusions: Cytotoxic activity of the biosynthesized AgNPs may be due to the presence of alkaloids present in the algal extract. Our AgNPs appear more bactericidal against gram-positive bacteria (B. subtillus).

Dryocrassin ABBA Induces Apoptosis in Human Hepatocellular Carcinoma HepG2 Cells Through a Caspase-Dependent Mitochondrial Pathway

  • Jin, Zhe;Wang, Wen-Fei;Huang, Jian-Ping;Wang, He-Meng;Ju, Han-Xun;Chang, Ying
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.1823-1828
    • /
    • 2016
  • Background: Biological and pharmacological activities of dryocrassin ABBA, a phloroglucinol derivative extracted from Dryopteris crassirhizoma, have attracted attention. In this study, the apoptotic effect of dryocrassin ABBA on human hepatocellular carcinoma HepG2 cells was investigated. Materials and Methods: We tested the effects of dryocrassin ABBA on HepG2 in vitro by MTT, flow cytometry, real-time PCR, and Western blotting. KM male mice were used to detect the effect of dryocrassin ABBA on H22 cells in vivo. Results: Dryocrassin ABBA inhibited the growth of HepG2 cells in a concentration-dependent manner. After treatment with 25, 50, and $75{\mu}g/mL$ dryocrassin ABBA, the cell viability was 68%, 60% and 49%, respectively. Dryocrassin ABBA was able to induce apoptosis, measured by propidium iodide (PI)/annexin V-FITC double staining. The results of real-time PCR and Western ting showed that dryocrassin ABBA up-regulated p53 and Bax expression and inhibited Bcl-2 expression which led to an activation of caspase-3 and caspase-7 in the cytosol, and then induction of cell apoptosis. In vivo experiments also showed that dryocrassin ABBA treatment significantly suppressed tumor growth, without major side effects. Conclusions: Overall, these findings provide evidence that dryocrassin ABBA may induce apoptosis in human hepatocellular carcinoma cells through a caspase-mediated mitochondrial pathway.