• Title/Summary/Keyword: Human hair dermal papilla cells

Search Result 49, Processing Time 0.041 seconds

Effect of essential oil from Coicis Semen (ECS) on proliferation of human hair dermal papilla cells (의이인의 정유 분획물이 모유두 세포의 성장에 미치는 영향)

  • Kim, Yoo-Jin;Seo, Kyung Hye;Jang, Gwi Young;Jung, Ji Wook;Kim, Mi Ryeo
    • The Korea Journal of Herbology
    • /
    • v.36 no.3
    • /
    • pp.47-53
    • /
    • 2021
  • Objectives : Currently, the alopecia is one of the most emotionally stressful syndromes in human life. Human hair dermal papilla cells (HDPCs) play an essential role in controlling hair growth and in regulating hair cycle. We performed MTT assay, cell cycle, and western blot to determine the effects of essential oil from Coicis Semen (ECS) on hair growth in HDPCs. Methods : We monitored cell proliferations by MTT assay in HDPCs. After setting up the safe and effective concentration range to be treated ECS, cell cycle analysis was performed using flow cytometry. Also, the protein expression of hair growth-related factors such as insulin like growth factor-1 (IGF-1), Wnt, extracellular signal-regulated kinase (ERK), serine/threonine-specific protein kinase (Akt) in HDPCs was determined by western blot. Results : As results, cell proliferation was increased in ECS group compared to dimethyl sulfoxide (DMSO) group and minoxidil (MNXD) group. Cell number of ECS group was more decrease in sub G1 phase than cell number of DMSO group. Also, cell number of ECS group increased compared to cell number of DMSO group in G1 phase. Protein expression of ECS group was higher than protein expression of DMSO group on related hair growth factors (IGF-1, Wnt, ERK, Akt). Conclusion : As mentioned above, ECS increased cell proliferation and the protein expression of IGF-1, Wnt, ERK, and Akt. These results suggest that ECS could be used as a potential material for the treatment of alopecia by increasing the proliferation of HDPCs.

The Antioxidant Activities and Hair-growth Promotion Effects of Tenebrio molitor Larvae Extracts (TMEs) (갈색거저리 유충 추출물의 항산화 활성 및 모발 성장 촉진 효과)

  • Baek, Minhee;Seo, Minchul;Kim, Mi-Ae;Yun, Eun-Young;Hwang, Jae-Sam
    • Journal of Life Science
    • /
    • v.27 no.11
    • /
    • pp.1269-1275
    • /
    • 2017
  • Tenebrio molitor samples were investigated as novel biomaterials and sources of food in several recent studies. However, the insects' effects on hair growth were not sufficiently researched. To develop novel and natural materials for preventing alopecia and promoting hair growth, this study investigated the antioxidant activities and hair-growth promotion effects of TMEs. To determine the antioxidant activities, the TMEs' DPPH radical- and nitrite-scavenging activities were examined. To determine hair-growth promotion effects, proliferations of human dermal papilla cells (DPCs) and the murine fibroblast cell line NIH3T3 were evaluated by using an MTS assay. In addition, estimations were made for cell viabilities against cell death induced by dihydrotesterone (DHT) in DPCs and inhibitory effects against potassium channel blocking induced by tolbutamide (TBM) in NIH3T3 cells. The DPPH radical scavenging activity was 81.17%, and the nitrite scavenging activity was 43.69%; the activities were similar to the activities of blueberry extracts. Moreover, the TMEs promoted the proliferation of human DPCs and NIH3T3 cells, which were concentrated dependently. The TMEs prevented not only DHT-induced DPC cytotoxicity but also TBM's action as a potassium channel blocker in NIH3T3 cells. The results suggested that TME could be used as a functional therapeutic alopecia reagent, to prevent hair loss and to promote hair growth.

Corticotropin-Releasing Factor Down-Regulates Hair Growth-Related Cytokines in Cultured Human Dermal Papilla Cells (사람 모유두세포에서 코르티코트로핀분비인자에 의한 모발성장관련사이토카인의 발현 조절)

  • Lee, Eun Young;Jeon, Ji Hye;Lee, Min Ho;Lee, Sunghou;Kim, Young Ho;Kang, Sangjin
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.4
    • /
    • pp.413-421
    • /
    • 2014
  • Corticotropin-releasing factor (CRF) is involved in the stress response and there is increasing evidence that stress influences skin disease such as hair loss. In cultured human hair follicles, CRF inhibits hair shaft elongation, induces premature regression and promotes the apoptosis of hair matrix keratinocytes. We investigated whether CRF influences the dermal papilla cells (DPC) that play pivotal roles in hair growth and cycling. Human DPCs were treated with CRF, adrenocorticotropic hormone (ACTH) and cortisol, key stress hormones along the hypothalamic-pituitary -adrenal (HPA) axis for 1-24 h. Interestingly, CRF modulated the expression of cytokines related to hair growth (KGF, Wnt5a, $TGF{\beta}-2$, Nexin) and increased cAMP production in cultured DPCs. CRF receptors were down-regulated by negative feedback systems. Pretreatment of CRF receptor antagonists or protein kinase A (PKA) inhibitor prevented the CRF-induced modulation. Since the CRF induces proopiomelanocortin (POMC) expression through the cAMP/PKA pathway, we analyzed POMC mRNA. CRF stimulated POMC expression in cultured human DPCs, yet we were unable to detect ACTH levels by western blot. These results indicate that CRF operates within DPCs through CRF receptors along the classical CRF signaling pathway and CRF receptor antagonists could serve as potential therapeutic and cosmetic agents for stress-induced hair loss.

Effect of the hedgehog signaling pathway on hair formation-related cells

  • Park, Jaehyun;Park, Sangkyu;Seo, Jeongmin;Roh, Sangho
    • International Journal of Oral Biology
    • /
    • v.44 no.4
    • /
    • pp.144-151
    • /
    • 2019
  • Alopecia has emerged as one of the biggest interests in modern society. Many studies have focused on the treatment of alopecia, such as transplantation of hair follicles or inhibition of the androgen pathway. Hair growth is achieved through proper proliferation of the components such as keratinocytes and dermal papilla cells (DPCs), movement, and interaction between the two cells. The present study examined the effect of the hedgehog (Hh) signaling pathway, which is an important and fundamental signal in the cell, on the morphology and the viability of human keratinocytes and DPCs. Upregulation of Hh signaling caused a morphological change and an increase in epithelium-mesenchymal transition-related gene expression but reduced the viability of keratinocytes, while the alteration of Hh signaling did not cause any change in DPCs. The results show the possibility that the regulation of Hh signaling can be applied for the treatment of alopecia.

The In Vivo and In Vitro Effects of Terminalia bellirica (Gaertn.) Roxb. Fruit Extract on Testosterone-Induced Hair Loss

  • Min Jeong Woo;Ha Yeong Kang;So Jeong Paik;Hee Jung Choi;Salah Uddin;Sangwoo Lee;Soo-Yong Kim;Sangho Choi;Sung Keun Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.11
    • /
    • pp.1467-1474
    • /
    • 2023
  • Due to the continuous increase in patients with androgenetic alopecia (AGA) and psychological disorders such as depression and anxiety, the demand for hair loss treatment and effective hair growth materials has increased. Terminalia bellirica (Gaertn.) Roxb. (TBE) reportedly exerts anti-inflammatory, hepatoprotective, and antidiabetic effects, among others, but its effects on testosterone (TS)-inhibited hair growth remains unclear. In this study, we evaluated the effects of TBE on TS-induced hair growth regression in human follicle dermal papilla cells (HFDPCs) and C57BL/6 mice. Oral administration of TBE increased TS-induced hair growth retardation. Interestingly, effects were greater when compared with finasteride, a commercial hair loss treatment product. Histological analyses revealed that oral TBE administration increased hair follicles in the dorsal skin of C57BL/6 mice. Additionally, western blotting and immunofluorescence showed that oral TBE administration recovered the TS-induced inhibition of cyclin D1, proliferating cell nuclear antigen (PCNA), and Ki67 expression in vivo. Using in vitro proliferation assays, TBE promoted HFDPC growth, which was suppressed by TS treatment. Thus, TBE may be a promising nutraceutical for hair health as it promoted hair growth in AGA-like in vitro and in vivo models.

Effect of ethanol extract from Achyranthis Radix on hair growth (우슬의 에탄올 추출물이 모발 성장에 미치는 영향)

  • Lee, Mi-Ja;Choi, Moon-Yeol;Kim, Yoo Jin;Kim, Mi Ryeo;Yoo, Wang Keun
    • The Korea Journal of Herbology
    • /
    • v.36 no.4
    • /
    • pp.1-7
    • /
    • 2021
  • Objective : As more and more people are interested in appearance in modern society, the increasing number of hair loss population can have an important impact on psychological and social problems such as depression and inappropriate interpersonal symptoms. Therefore, much research is being done on treatments for alopecia using herbal extracts with relatively few side effects. This study was investigated about the effect of Achyranthis Radix (AR) extract with ethanol solvent on hair growth. Methods : We determined the promoting efficacy of AR-ethanol extract compared with minoxidil (MNXD) on the growth of human hair dermal papilla cells (HDPCs). Cell viability was measured by MTT assay and cell proliferation was confirmed by cell cycle analysis from flow cytometry in HDPCs. Also, we monitored the safe concentration range through MTT assay. And protein expression of hair growth-related genes (insulin-like growth factor 1 (IGF-1), Wnt3a, Protein kinase B (Akt), Extracellular signal-regulated kinase (Erk)) was monitored by western blot. Results : On cell cycle analysis, the G2/M phase was higher than that of the DW group in AR ethanol extract group at 0.05 and 0.1 mg/㎖. All protein expression levels of HDPCs were increased in AR ethanol extract groups and the MNXD group, compared to the DW group, respectively. Conclusion : As mentioned above, AR extract increased cell proliferation and the protein expression of IGF-1, Wnt3a, Akt, Erk in HDPCs. These results suggest that AR ethanol extract has promoted hair growth and it might be potential hair growth supplement.

Isolation and cultivation of follicle constituting cells from human hair follicles

  • Shin, Youn-Ho;Seo, Young-Kwon;Lee, Doo-Hoon;Yoo, Bo-Young;Song, Kye-Yong;Seo, Seong-Jun;Whang, Sung-Joo;Kim, Young-Jin;Yang, Eun-Kyung;Park, Chang-Seo;Chang, Ih-Seop;Park, Jung-Keug
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.365-368
    • /
    • 2003
  • Hair follicles develop as a result of epithelial-mesenchymal interactions between epidermal keratinocytes and dermal cells. Moreover hair follicles constitute multiple cells that influence hair follicle development and cyclic activity. We isolated some cells using explantation and enzymatic digestion method from human scalp hair follicles. So we could culture some follicular cells, such as outer root sheath (ORS) cells, dermal papilla (DP) cells, dermal sheath (DS) cells, matrix cells and melanocyte.

  • PDF

A novel tetrapeptide for the treatment of hair loss identified in ginseng berry: in silico characterization and molecular docking with TGF-β2

  • Sung-Gyu Lee;Sang Moon Kang;Hyun Kang
    • Journal of Plant Biotechnology
    • /
    • v.49 no.4
    • /
    • pp.316-324
    • /
    • 2022
  • Hair loss causes psychological stress due to its effect on appearance. Therefore, the global market for hair loss treatment products is rapidly growing. The present study demonstrated that ginseng berry-derived and sequence-modified peptides promoted the proliferation rate of dermal papilla (DP) cells and keratinocytes, in addition to having antioxidant properties. Moreover, the potential role of these ginseng berry peptides as TGF-β2 antagonists was confirmed through in silico computer docking. In addition to promoting the growth of ,the ginseng berry-derived peptides also promoted the proliferation of keratinocytes experimental Particularly, an unmodified ginseng berry-derived peptide (GB-1) and two peptides with sequence modifications (GB-2 and GB-3) decreased ROS generation and exhibited a protective effect on damaged HaCaT keratinocytes. Computer-aided peptide discovery was conducted to identify the potential interactions of important proteins with transforming growth factor-beta 2 (TGF-β2), a key protein that plays a crucial role in the human hair growth cycle. Our results demonstrated that MAGH, an amino acid sequence present in herbal supplements and plant-based natural compounds, can inhibit TGF-β2.

Study on Effect of Human Hair by Deer Antler Fermented Keratin Peptide (녹용 발효 케라틴 펩타이드에 의한 인체 모발 연구)

  • Gaewon, Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.48 no.4
    • /
    • pp.385-392
    • /
    • 2022
  • In this study, keratin peptides were produced through high-temperature anaerobic fermentation of keratin, a protein contained in deer antler, with Fervidobacterium islandicum AW-1, and factors related to human hair, confirming the possibility of keratin peptides as cosmetic ingredients. As a result of the cytotoxicity and proliferation of deer antler fermented keratin peptide according to the concentration in the dermal papilla cell line, cytotoxicity was not observed and the cell proliferation effect was shown. For human dermal papilla cells, statistically significant increasing in growth factors according to the deer antler fermented keratin peptide was determined possiblity of effects on hair growth. Cosmetic products containing deer antler fermented keratin peptides were manufactured and skin safety and anti hair loss efficacy clinical tests were conducted. As a result, after 12 weeks of use, the total number of hairs statistically significant increased compared to before using the product and the difference in total number of hairs compared to the control group was found. In conclusion, we suggest that the possibility of fermented deer antler keratin peptide as a cosmeceutical ingredient as well as a health functional food material was confirmed.

Investigation of Antioxidant Activity of Cynanchi Wilfordii Radix and Inhibitory Effect of 5α-reductase mRNA in Human Dermal Papilla Cells (백수오(白首烏)의 항산화 효능 및 모유두 세포의 5α-reductase mRNA 발현 억제 효능)

  • Cho, Nam Joon;Choi, Young Ho;Jeon, Hai Li;Lee, Woong Hee;Kim, Kee Kwang;Han, Hyo Sang
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.31 no.6
    • /
    • pp.374-379
    • /
    • 2017
  • Hair loss affects interpersonal relationships and causes psychological stress. In this study, we investigated the antioxidant activity of Cynanchi Wilfordii Radix (CWR) and its effects on dermal papilla (DP) cells. Antioxidant efficacy was examined by ABTS assay. To confirm the effect on cell activity, MTS assay was performed and cell count was directly measured by hemocytometer. The mRNA expression of genes involved in hair formation and hair loss formation was confirmed by quantitative RT-PCR. CWR has a strong antioxidant activity. Cell viability of DP cells was increased to 118.5% by treatment of 0.5 mg/ml CWR for 24 hours, but the effect on the cell number was insignificant. These results suggest that CWR increases mitochondrial activity without promoting cell proliferation. Treatment of DP cells with 0.5 mg/ml CWR resulted in 48.5% reduction of mRNA expression of type 2 $5{\alpha}$-reductase, a major cause of male hair loss. In addition, mRNA expression of bone morphogenetic pretein (BMP), fibroblast growth factor (FGF)7, and FGF10, which are closely related to hair growth, was also decreased. Reactive oxygen species (ROS) acts as a cause of hair loss. The excellent antioxidant efficacy of CWR is thought to be able to effectively remove ROS. The dihydrotestosterone produced by type 2 $5{\alpha}$-reductase in DP cells is a potent inducer of male pattern hair loss. The inhibitory effect of type 2 $5{\alpha}$-reductase mRNA on DP cells induced by CWR may induce a positive therapeutic effect of male pattern hair loss.