• Title/Summary/Keyword: Human hair dermal papilla cells

Search Result 49, Processing Time 0.025 seconds

Extracts for the Hair Growth Stimulation using In vivo and In vitro Test Models (In vivo와 In vitro 평가모델을 利用한 韓藥抽出物의 毛髮成長 및 促進에 미치는 實驗的 硏究)

  • Chiang, Hsueh-Chuan;Lee, Soo-Hyeong;Kim, Nam-Kwen;Lim, Hong-Jin;Hwang, Chung-Yeon
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.15 no.2
    • /
    • pp.53-79
    • /
    • 2002
  • To screen the effective materials for hair loss treatment, several natural extracts were tested using in vivo and in vitro test models. Firstly, all test materials were applicated onto the back skin of C57BL/6 mouse and then hair growth promoting effect was measured using hair growth index. As a result, Prunus mume, black bean, Brassica campestris subsp. black sesame and Rubi Fructus showed potent hair growth promoting effect, ranking as 1.5-2.0 of hair growth index. However, there were no plant extracts, which have remarkable potential of growth promotion of human hair dermal papilla cells cultured in vitro. In the experiments of 5${\alpha}$-reductase type Ⅱ inhibition assay, Prunus mume, Eriobotryae Folium showed effective potential to inhibit the activity of 5${\alpha}$-reductase type Ⅱ. To investigate the possible involvement of the effect of several plant extracts on the gene expression of growth factors in human hair dermal papilla cells, RT - PCR analyses were performed. However, there were no plant extracts, which have profound effect on the gene expression of several growth factors such as IGF-I, KGF, HGF and VEGF in the dermal papilla cells. Another tests for inhibition of microbial such as P. acne were also carried out to find whether these plant extracts have anti -microbial activities. Rubi Fructus showed anti -microbial effects on Propionibacterium acnes, which is believed as a pathogen of acne. Together, these results showed several plant extracts can be used for hair growth promotion.

  • PDF

Studies on the effects of medicinal plant extracts on the hair growth stimulation (數種의 韓藥材가 毛髮成長에 미치는 影響)

  • Choi, Woong;Choi, Jung-Hwa;Kim, Jong-Han
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.15 no.2
    • /
    • pp.80-103
    • /
    • 2002
  • To screen the effective materials for hair loss treatment, several natural extracts were tested using in vivo and in vitro test models. Firstly, all test materials were applicated onto the back skin of C57BL/6 mouse and then hair growth pormoting effect were measured using hair growth index As a result, Polygonum muitifiorum Thunb and Terrninalia chebula Retz. showed potent hair growth promoting effect, ranking as 1.5-2.0 of hair growth index. However, there were no plant extracts, which have remarkable potential of growth promotion of human hair dermal papilla cells cultured in vitro. In the experiments of 5${\alpha}$-reductase type Ⅱ inhibition assay, Morus alba L., Chaenomelis Fructus, Saussureae Radix, Angelicae Gigantis Radix, Polygonum multifiorum Thunb, and Angelica dahurica (Fischer) Bentham et Hooker f. showed effective potential to inhibit the activity of 5${\alpha}$-reductase type Ⅱ. To investigate the possible involvement of effects of several plant extracts on the gene expression of growth factors in human hair dermal papilla cells, RT-PCR analyses were performed. As a consequences, Mentha haplocalyx Briq., Cimicifuga foetida L., Eclipta prostrata (L.) L., Pinus densiflora S. et. Z, and Polygonum muitifiorum Thunb revealed the regulatory roles on the expression of growth factors such as IGF-I, KGF, HGF and VEGF in the dermal papilla cells. Another test for inhibition of microbial such as P. acne and P. ovale were also carried out to find whether these plant extracts have anti-microbial activities. Morus alba L. and Chaenomelis Fructus showed anti-microbial effects on Propionibacterium acnes, which is believed as a pathogen of acne. Together, these results showed several plant extracts can be used for hair growth promotion.

  • PDF

Monoterpenoid Loliolide Regulates Hair Follicle Inductivity of Human Dermal Papilla Cells by Activating the AKT/β-Catenin Signaling Pathway

  • Lee, Yu Rim;Bae, Seunghee;Kim, Ji Yea;Lee, Junwoo;Cho, Dae-Hyun;Kim, Hee-Sik;An, In-Sook;An, Sungkwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.11
    • /
    • pp.1830-1840
    • /
    • 2019
  • Loliolide is one of the most ubiquitous monoterpenoid compounds found in algae, and its potential therapeutic effect on various dermatological conditions via agent-induced biological functions, including anti-oxidative and anti-apoptotic properties, was demonstrated. Here, we investigated the effects of loliolide on hair growth in dermal papilla (DP) cells, the main components regulating hair growth and loss conditions. For this purpose, we used a three-dimensional (3D) DP spheroid model that mimics the in vivo hair follicle system. Biochemical assays showed that low doses of loliolide increased the viability and size of 3D DP spheroids in a dose-dependent manner. This result correlated with increases in expression levels of hair growth-related autocrine factors including VEGF, IGF-1, and KGF. Immunoblotting and luciferase-reporter assays further revealed that loliolide induced AKT phosphorylation, and this effect led to stabilization of β-catenin, which plays a crucial role in the hair-inductive properties of DP cells. Further experiments showed that loliolide increased the expression levels of the DP signature genes, ALP, BMP2, VCAN, and HEY1. Furthermore, conditioned media from loliolide-treated DP spheroids significantly enhanced proliferation and the expression of hair growth regulatory genes in keratinocytes. These results suggested that loliolide could function in the hair growth inductivity of DP cells via the AKT/β-catenin signaling pathway.

Flavonoid Silibinin Increases Hair-Inductive Property Via Akt and Wnt/β-Catenin Signaling Activation in 3-Dimensional-Spheroid Cultured Human Dermal Papilla Cells

  • Cheon, Hye In;Bae, Seunghee;Ahn, Kyu Joong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.321-329
    • /
    • 2019
  • Hair loss, also known as alopecia, is a common dermatological condition of psychosocial significance; development of therapeutic candidates for the treatment of this condition is, hence, important. Silibinin, a secondary metabolite from Silybum marianum, is an effective antioxidant that also prevents various cutaneous problems. In this study, we have investigated the effect of silibinin on hair induction using three-dimensional (3D) cultured, human dermal papilla (DP) spheroids. Silibinin was found to significantly increase viability through AKT serine/threonine kinase (AKT) activation in 3D DP spheroids. This was correlated with an increase in the diameter of the 3D DP spheroids. The activation of the wingless and INT-1 (Wnt)/${\beta}$-catenin signaling pathway, which is associated with hair growth induction in the DP, was evaluated using the T cell-specific transcription factor and lymphoid enhancer-binding factor (TCF/LEF) transcription factor reporter assay; results indicated significantly increased luciferase activity. In addition, we were able to demonstrate increased expression of the target genes, WNT5a and LEF1, using quantitative real-time PCR assay. Lastly, significantly elevated expression of signature genes associated with hair induction was demonstrated in the 3D DP spheroids treated with silibinin. These results suggest that silibinin promotes proliferation and hair induction through the AKT and Wnt/${\beta}$-catenin signaling pathways in 3D DP spheroids. Silibinin can be a potential candidate to promote hair proliferation.

Anti-Oxidant and Hair-Growth-Promoting Effect of Pectin Lyase-Modified Red Ginseng Extract (GS-E3D) (홍삼가수분해추출물(GS-E3D)의 항산화 및 양모 효과)

  • Pyo, Mi Kyung;Hong, Se Chul;Jung, Jong Tae;Jo, Yun Ho;Lee, Ki Moo
    • Korean Journal of Pharmacognosy
    • /
    • v.48 no.3
    • /
    • pp.195-201
    • /
    • 2017
  • To develop new therapy for prevention and treatment of hair loss is very important according to increase of the number of hair loss people. The aim of this study was to investigate the hair growth promoting effects of pectin lyase-modified red ginseng extract (GS-E3D). We examined antioxidant and anti-inflammatory effects, human hair dermal papilla cells (HHDPC) proliferation, and testoterone-induced $5{\alpha}$-reductase inhibitory effects. GS-E3D show not only 1,1-diphenyl-2-picryhydrazyl (DPPH) radical scavenging activity and xanthine oxidase inhibitory effects as an anti-oxidant property, but also lip-oxygenase and hyaluronidase inhibitory effects as an anti-inflammatory property. Human hair dermal papilla cells proliferation by GS-E3D was higher than those of minoxidil or finasteride, using the positive controls. Moreover, GS-E3D exhibited $5{\alpha}$-reductase inhibitory activities after stimulating by testoterone. The present results indicate that GS-E3D has a potential to be as an hair growth promoting agent for cosmetic materials.

Preventable effect of L-threonate, an ascorbate metabolite, on androgen-driven balding via repression of dihydrotestosteroneinduced dickkopf-1 expression in human hair dermal papilla cells

  • Kwack, Mi-Hee;Ahn, Ji-Sup;Kim, Moon-Kyu;Kim, Jung-Chul;Sung, Young-Kwan
    • BMB Reports
    • /
    • v.43 no.10
    • /
    • pp.688-692
    • /
    • 2010
  • In a previous study, we recently claimed that dihydrotestosterone (DHT)-inducible dickkopf-1 (DKK-1) expression is one of the key factors involved in androgen-potentiated balding. We also demonstrated that L-ascorbic acid 2-phosphate (Asc 2-P) represses DHT-induced DKK-1 expression in cultured dermal papilla cells (DPCs). Here, we investigated whether or not L-threonate could attenuate DHT-induced DKK-1 expression. We observed via RT-PCR analysis and enzyme-linked immunosorbent assay that DHT-induced DKK-1 expression was attenuated in the presence of L-threonate. We also found that DHT-induced activation of DKK-1 promoter activity was significantly repressed by L-threonate. Moreover, a co-culture system featuring outer root sheath (ORS) keratinocytes and DPCs showed that DHT inhibited the growth of ORS cells, which was then significantly reversed by L-threonate. Collectively, these results indicate that L-threonate inhibited DKK-1 expression in DPCs and therefore is a good treatment for the prevention of androgen-driven balding.

Microalgae, Tetraselmis tetrathele has Alopecia Prevention and Scalp Improvement

  • Park, Si-Hyang;Lee, Kyong-Dong;Ahn, Ginnae;Park, Hye-Jin;Choi, Kap Seong;Chun, Jiyeon;Shim, Sun-Yup
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.4
    • /
    • pp.528-533
    • /
    • 2021
  • The microalga, Tetrathelmis tetrathele, is used in the development of products for the aquaculture, food, and nutraceutical industries. In the present study, we investigated whether the T. tetrathele ethanolic extract (TTE), which has anti-inflammatory properties, can confer protection against alopecia and improve scalp health, influence the proliferation of human keratinocytes, HaCaT cells, and human hair follicle dermal papilla cells (HFDPC), or inhibit 5α-reductase activity. We found that TTE inhibited the production of the inflammatory mediator, nitric oxide (NO), and prostaglandin E2 (PGE2) without cytotoxicity in LPS-stimulated RAW 264.7 cells. In addition, TTE encouraged the proliferation of HaCaT cells and HFDPC. Our results showed that TTE had anti-inflammatory activities, proliferated HaCaT cells and HFDPC, and inhibited 5α-reductase activity. Therefore, we suggest that T. tetrathele could be a potent therapeutic agent for alopecia prevention and scalp improvement.

Novel Heptapeptide Binds to the Lgr5 Induces Activation of Human Hair Follicle Cells and Differentiation of Human Hair Follicle Bulge Stem Cells (Lgr5와 결합하는 신규 헵타펩타이드를 이용한 인체 모낭 세포의 활성과 모낭줄기세포 분화 유도)

  • Min Woong Kim;Eung Ji Lee;Ha-Na Gil;Yong Ji Chung;Eun Mi Kim
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.1
    • /
    • pp.75-85
    • /
    • 2023
  • This study was conducted to assess the effect of heptapeptide, composed of seven amino acids, on the activation of human hair cells isolated from human hair follicles. We have confirmed that the heptapeptide could bind to Lgr5 from the results of surface plasmon resonance (SPR) analysis. Heptapeptide enhanced the proliferation of human hair follicle dermal papilla cells (HHFDPCs) in a dose dependent manner. It induced the protein level of nuclear β-catenin, and the expressions of β-catenin downstream target genes, including LEF1, Cyc-D1 and c-Myc, in HHFDPCs. Heptapeptide significantly induced the phosphorylation of Akt and ERK, and the mRNA expressions of growth factors, including hepatocyte growth factor (HGF), keratinocyte growth factor (KGF) and vascular endothelial growth factor (VEGF), in HHFDPCs. In addition, heptapeptide significantly increased mRNA expression levels of differentiation-related transcription factors of human hair germinal matrix cells (HHGMCs) and differentiation markers of human hair outer root sheath cells (HHORSCs). Additionally, we investigated the effect of heptapeptide on human hair follicle stem cells (HHFSCs) differentiation and found that the heptapeptide reduced the mRNA and protein levels of stem cell markers, while it increased those levels of differentiation markers. These results have indicated that the heptapeptide promotes proliferation or differentiation of various types of hair follicle constituent cells through the induction of Wnt/β-catenin signaling. From the results, we have suggested that the heptapeptide in this study could be applied as a new functional material for the improvement of hair growth and alopecia.

Human umbilical cord blood mesenchymal stem cells engineered to overexpress growth factors accelerate outcomes in hair growth

  • Bak, Dong Ho;Choi, Mi Ji;Kim, Soon Re;Lee, Byung Chul;Kim, Jae Min;Jeon, Eun Su;Oh, Wonil;Lim, Ee Seok;Park, Byung Cheol;Kim, Moo Joong;Na, Jungtae;Kim, Beom Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.5
    • /
    • pp.555-566
    • /
    • 2018
  • Human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) are used in tissue repair and regeneration; however, the mechanisms involved are not well understood. We investigated the hair growth-promoting effects of hUCB-MSCs treatment to determine whether hUCB-MSCs enhance the promotion of hair growth. Furthermore, we attempted to identify the factors responsible for hair growth. The effects of hUCB-MSCs on hair growth were investigated in vivo, and hUCB-MSCs advanced anagen onset and hair follicle neogeneration. We found that hUCB-MSCs co-culture increased the viability and up-regulated hair induction-related proteins of human dermal papilla cells (hDPCs) in vitro. A growth factor antibody array revealed that secretory factors from hUCB-MSCs are related to hair growth. Insulin-like growth factor binding protein-1 (IGFBP-1) and vascular endothelial growth factor (VEGF) were increased in co-culture medium. Finally, we found that IGFBP-1, through the co-localization of an IGF-1 and IGFBP-1, had positive effects on cell viability; VEGF secretion; expression of alkaline phosphatase (ALP), CD133, and ${\beta}-catenin$; and formation of hDPCs 3D spheroids. Taken together, these data suggest that hUCB-MSCs promote hair growth via a paracrine mechanism.

Hair Growth Promoting Potential of Phospholipids Purified from Porcine Lung Tissues

  • Choi, Seong-Hyun;Moon, Jeong-Su;Jeon, Byung-Suk;Jeon, Yeon-Jeong;Yoon, Byung-Il;Lim, Chang-Jin
    • Biomolecules & Therapeutics
    • /
    • v.23 no.2
    • /
    • pp.174-179
    • /
    • 2015
  • BP201, porcine lung tissue-derived phospholipids, consists of phosphatidylcholine as a major phospholipid species. BP201 promoted hair growth after application onto the shaved backs of BALB/c and C3H mice. Its effect was enhanced when applied together with minoxidil (MNX) in C3H mice. When the tissue specimens prepared from the shaved skins of BP201-treated and control mice were microscopically examined, the total numbers of hair follicles in both anagen and telogen phases of BP201-treated mice were significantly higher than those of control mice. The numbers of hair follicles in the anagen phase of BP201-treated mice were also higher than those of control mice. In combination with MNX, BP201 further increased the total number of hair follicles, but did not alter the percentage of hair follicles in the anagenic phase. BP201 also increased the proliferation of human hair follicle dermal papilla cells. Collectively, BP201 possesses hair growth promoting potential, which would suggest its use singly or in combination for hair growth products.