• 제목/요약/키워드: Human gingival fibroblasts

검색결과 144건 처리시간 0.028초

MICROPATTERNED GROOVES AND ACID-ETCHING ON TITANIUM SUBSTRATA ALTER VIABILITY AND GENE EXPRESSION OF ADHERED HUMAN GINGIVAL FIBROBLASTS: A PILOT STUDY

  • Lee, Suk-Won;Kim, Su-Yeon;Lee, Keun-Woo
    • 대한치과보철학회지
    • /
    • 제45권3호
    • /
    • pp.375-381
    • /
    • 2007
  • Statement of problem. Prior to determining an optimal width of micropatterned grooves provided on titanium substrata, we have done a pilot study using surface topographies in combined microm and submicrom levels. Purpose. The purpose of this study was twofold 1) to assess the proliferation and 2) to analyze the expression of genes encoding the intracellular signaling proteins involved in cell-substratum adhesions and adhesion-dependent G1 phase cell cycle progression of human gingival fibroblasts plated on smooth and microgrooved/acid-etched titanium substrata. Material and methods. Three groups of titanium discs as NE0 (smooth Ti substrata), E15 (Ti substrata with microgrooves of $15{\mu}m$ of spacing and $3.5{\mu}m$ in depth and with further acidetching), and E30 (Ti substrata with microgrooves of $30{\mu}m$ spacing and $3.5{\mu}m$ in depth and with further acid-etching) served as the human gingival fibroblasts' substrata. Viability and proliferation of fibroblasts were determined using an XTT assay. Gene expressions of fibronectin, ${\alpha}5$ integrin, CDK4, and $p27^{kip}$ were analyzed in RT-PCR. Cell-substratum interactions were analyzed in SEM. Results. From the XTT assay at 24 h incubation, the mean optical density (OD) value of E15 was significantly greater than the values of E30 and NE0. At 48 and 96 h however, the mean OD values of E30 were significantly greater than the values of E15 and NE0. No differences in the expression of PCR transcripts at 96 h incubations were noted between groups, whereas at 48 h, an unexpected increase in the expression of all the transcripts were noted in E15 compared with other two groups. Fibroblasts were observed to orient and adhere inside the microgrooves. Conclusion. Micropatterned grooves and acid-etching on Ti substrata alter viability and gene expression of adhered human gingival fibroblasts.

불소양치용액이 소아 치은 섬유아세포의 세포활성에 미치는 영향에 관한 연구 (EFFECTS OF FLUORIDE MOUTHRINSE ON CELL ACTIVITY OF GINGIVAL FIBROBLASTS OF CHILDREN)

  • 이동현;이광희
    • 대한소아치과학회지
    • /
    • 제24권1호
    • /
    • pp.204-219
    • /
    • 1997
  • The use of fluoride is one of the most effective methods for caries prevention. Fluoridation of public water supply has been recognized, for many years, as an effective way to reduce dental caries. The fluoride supplement has been recommended when the natural fluoride was unavailable or below the optimal range. However the mechanism of caries prevention by fluoride has not yet been clarified and it is well known that an overdose of fluoride results inacute and chronic toxicity, especially dental fluorosis. Fluoride mouthrinsing solution is widely used in dentistry due to its effectiveness in carrying anticariogenic action. Understanding the effects of fluoride mouthrinsing solution on human gingival fibroblasts will provide the safety rationale for its use during the caries preventive therapy. The purpose of this study was to evaluate the cytotoxic effect of fluoride mouthrinsing solution on the human gingival fibroblast in vitro. The human gingival fibroblasts were cultured from healthy gingiva on the extracted deciduous teeth of children. Cells were inoculated into a 24-well plate with $1{\times}10^4cells/well$ of medium at $37^{\circ}C$, 100% humidity, 5% $CO_2$ incubator for 24 hours. And the cells were counted by using the hemocytometer at each designed study. Human gingival fibroblasts were cultured in growth medium after one minute application range of 0.02%-0.2% NaF solution and 0.1% $SnF_2$ solution. The cells used in this study were between fifth to eighth passage number. The cell morphology was examined by inverted microscope and cell proliferation was measured by incorporating $[^3H]$-thymidine into DNA. DNA synthesis by human gingival fibroblasts was assessed by $[^3H]$-thymidine uptake assays while the cell activity was measured by MTT assay. Each concentrated fluoride mouthrinsing solution was estimated for its biocompatability with fibroblasts by the tissue culture technique. The results of this study were as follows : 1. It was observed that at 0.05%, 0.2% NaF mouthrinsing solution the cytoplasmic processes became globular. When 0.1% $SnF_2$ mouthrinsing solution was applied, the cytoplasmic process and cell morphology were disappeared. 2. DNA synthetic activity was reduced regardless of the concentration of the fluoride mouthrinsing solution. However, the result is statistically insignificant except 0.1% $SnF_2$ mouthrinsing solution(p<0.05). 3. Our results indicate that 0.02%, 0.05% concentrations of NaF mouthrinsing solution caused minimal cytotoxicity. But 0.2% NaF and 0.1% $SnF_2$ concentration were a significant difference between the cell activity in the experimental group and control group (p<0.05). 4. After appling 0.05% & 0.02% NaF fluoride mouthrinsing solution, cell activity was restored to the control groups level according to incubating time. The results suggest that direct exposure to fluoride solution inhibits gingival fibroblast activity. Therefore, for the most effective use of fluoride use, lowering the concentration of fluoride mouthrinsing is advisable because it maintains biocompatability and free ion in the oral fluid.

  • PDF

인체 치은섬유모세포에서 Lipopolysaccharides, Ursolic acid와 Oleanolic acid에 의한 Phenytoin 유도 세포활성에 미치는 영향 (EFFECTS OF LIPOPOLYSACCHARIDES, URSOLIC ACID AND OLEANOLIC ANCID ON PHENYTOIN-INDUCED CELL ACTIVITY IN HUMAN GINGIVAL FIBROBLAST)

  • 권오달;김윤성;신형식
    • Journal of Periodontal and Implant Science
    • /
    • 제24권1호
    • /
    • pp.98-108
    • /
    • 1994
  • Gingival hyperplasia is frequently associated with the long-term use of phenytoin for control of convulsive disorder. The purpose of this study was to investigate on the effects of lipopolysaccharides (LPS), ursolic acid and oleanolic acid to phenytoin-induced cell activity in human gingival fibroblast. Human gingival fibroblasts were cultured form the healthy gingiva of orthodontic patients. Gingival fibroblasts were trypsinized and transferred to the weels of microtest plates. Fibroblast were cultured in growth medium added $5{\mu}g/ml$ of phenytoin, $5{\mu}g/ml$ of LPS, $10^{-7}M$ of ursolic acid and oleanolic acid. The passage number of cultured fibroblasts were fifth and eight. Cell morphology was examined by inverted microscope and the cell activity was measured by proliferation assay. Ursolic acid significantly modulated cell morphology into globular shape at the concentrantion of $10^{-7}M$ in the presence of phenytoin and LPS, and the cell activity was significantl decreased by ursolic acid or oleanolic acid regardless of the presence of phenytoin and LPS. These results suggested that the increased phenytoin-induced cell activity might be modulated by ursolic acid regardless of the presence of phenytoin and LPS. These results suggested that the increased phenytoin-induced cell activity might be modulated by ursolic acid or oleanolic acid. Further study is needed to clarify their toxicological effects on cellular modulation and mRNA expression change.

  • PDF

Nifedipine이 인체 치은섬유모세포의 세포활성에 미치는 효과 (THE EFFECTS OF NIFEDIPINE ON THE ACTIVITY OF HUMAN GINGIVAL FIBROBLAST)

  • 최종길;김재현;신형식
    • Journal of Periodontal and Implant Science
    • /
    • 제23권3호
    • /
    • pp.622-634
    • /
    • 1993
  • Gingiva is remarkly sensitive to certain drugs. Especially, long term use of phentoin, dihydropyrydine (including nifedipine), cyclosporin and other drugs can be lead to pathologic changes in gingival tissue, especially in terms of proliferation of epithelium and connective tissue. Recent study in terms of proliferation of epithelium and connective tissue. Recent study is focused on the inhibition of drug-induced gingival hyperplasia by using medicaments. The purpose of this study was to investigate on the pharmacological effects of nifedipine, retinoic acid and glycyrrhetini acid to the activity in human gingival fibroblast. Human gingival fibroblasts were cultured from the healthy gingiva of orthodontic patients. Gingival fibroblasts were trypsinized and cultured in growth medium added $5{\mu}g/ml$ of nifedipine, $10^{+7}M$ of retinoic acid and glycyrrhetinic acid. The passage number of cultured fibroblasts were between fifth and eighth. The cell morphology was examined by inverted microscope and the cell acitivity was measured by the MTT assay. Nifedipine at the concentration of $5{\mu}g/ml$ was revealed significantly effective to increase the cell activity and lipopolysaccharide was cofactor to increase cell activity in the presence of nifedipine. However, retinoic acid was significantly effective on the globular change of cell morphology and loss of cell process regardless of the presence of nifedipine and LPS. Cell activity was significantly decreased by the glycyrrhetinic acid at the concentration of $10^-M$ regardless of the presence of nifedipine and LPS. These results suggested that the increased cell activity by nifedipine might be modulated by retinoic acid and glycyrrhetinic acid. Further study is needed to clarify on their toxicological effects during cellular modulation and mRNA expression change.

  • PDF

TWO COLORIMETRIC ASSAYS VERIFY THAT CALCIUM SULFATE PROMOTES PROLIFERATING ACTIVITY OF HUMAN GINGIVAL FIBROBLASTS

  • Chae, Min;Kim, Su-Yeon;Kim, Soo-Yeon;Lee, Suk-Won
    • 대한치과보철학회지
    • /
    • 제45권3호
    • /
    • pp.382-388
    • /
    • 2007
  • Statement of problem. The role of calcium sulfate in stimulating the growth of gingival soft tissue has been reported in few studies. Such a unique property of calcium sulfate could serve as a trouble-solving broker in compensating for the lack of soft tissues in various oral surgeries. Purpose. The purpose of this study was to compare the proliferating activities of human gingival fibroblasts seeded on various bone graft barrier materials of calcium sulfate, collagen, and polytetrafluorethylene (PTFE). Material and methods. Two calcium sulfates ($CAPSET^{(R)}$. and $CalForma^{(R)}$, Lifecore Biomedical Inc., St. Paul, Minnesota, USA), a resorbable natural collagen ($Bio-Gide^{(R)}$, Geistlich Pharma Ag., Wolhusen, Switzerland), and a non-resorbable PTFE ($TefGen-FD^{(R)}$, Lifecore Biomedical Inc., St. Paul, Minnesota, USA) served as the human gingival fibroblasts' substrates and comprised the four experimental groups, whereas the untreated floors of culture plastics were used in the control group, in this study. Cells were trypsinized, seeded, and incubated for 48 h. The proliferating activities of fibroblasts were determined by XTT and SRB assay and absorbance (optical density, OD) was measured. One-way ANOVA was used to analyze the differences in the mean OD values between the groups of CAPSET, CalForma, Bio-Gide, TefGen, and the control (p<0.05). Results. From the XTT assay, the mean OD value of the control group, the highest, was significantly greater than that of any of the four experimental groups followed by CalForma, CAPSET, TefGen, and Bio-Gide. Further, the mean OD value of CalForma, was significantly greater compared to that of Bio-Gide. From the SRB assay, Calforma showed the highest mean OD value, which was significantly greater than that of any other groups, followed by the control, CAPSET, Bio-Gide, and TefGen. The mean OD values of both the control and CAPSET were significantly greater compared to that of TefGen (p<0.05). Conclusion. Assessment of the viability and proliferation of cultured fibroblasts seeded and incubated for 48 h on various barrier-material substrates using XTT and SRB assay showed that calcium sulfate $CalForma^{(R)}$ promotes the proliferating activity of human gingival fibroblasts.

기계적 표면 처리된 TITANIUM PLASMA SPRAYED IMPLANT에 대한 치은섬유아세포전개양상의 형태학적 관찰 (THE MORPHOLOGICAL OBSERVATION OF HUMAN GINGIVAL FIBROBLASTS ATTACHMENT AND SPREADING ON THE MECHANICAL TREATED TITANIUM PLASMA SPRAYED IMPLANT SURFACE)

  • 황연희;이재목;서조영
    • Journal of Periodontal and Implant Science
    • /
    • 제25권3호
    • /
    • pp.741-755
    • /
    • 1995
  • 구강내 매식된 임프란트가 과도한 교합력이나 염증등의 이유로 구강내로 노출되었을 때 세균독소에 이완된 면을 제거하고 평활한 면을 형성하여 주위의 연조직, 경조직에 적합한 상태로 만들어 건강한 상태로 구강내에 유지하기 위해서 임프란트 매식체 표면을 기계적인 표면처리방법으로 처치하여 이러한 방법이 임프란트 표면성분, 치은섬유아세포의 전개양상에 미치는 영향을 알아보고자 본 실험을 실행하였다. IMZ사에서 제작한 직경 10mm, 높이 2mm의 원판 타이타늄을 이용하여 피막되지 않은 타이타늄면과 TPS면을 대조군으로 하고 기계적인 표면처리방법인 low speed stone bur처치면을 실험군으로 설정한 후 EDX로 타이타늄 표면성분을 분석하였고 주사전자현미경으로 치은섬유아세포의 전개양상을 관찰하였다. EDX에 의한 타이타늄 표면성분분석 결과 모든 실험군에서 titanium peak, 소량의 aluminum이 나타났으며 그외의 성분은 나타나지 않았다. 치은섬유아세포의 전개양상에 대한 주사전자현미경 관찰결과 평활한 타이타늄면에서 접종 30분 후 세사상돌기와 박판엽상으로 확장된 세포가 많이 관찰되며 6시간 후 신장된 치은섬유아세포가 시편에 밀착된 양상을 보였고 24시간 후 치은섬유아세포는 시편의 모든 면을 피개하며 가공시의 평행한 선을 따라 방향성을 띄었다. TPS가 잔존한 stone처치군에서 세포 접종 30분 후 세사상돌기가 적게 관찰되어 평활한 타이타늄면에 비해 초기부착이 늦은 것을 알 수 있었고 6, 24시간후 치은섬유아세포는 거친면으로 인해 시편에 밀착되지 못한 양상을 보였으나 평활한 타이타늄면과 연결되며 시편의 모든면을 피개하였다. TPS군에서 치은섬유아세포는 세포 접종 30분후 세사상돌기를 거의 찾아 볼 수 없어 초기부착이 다른군에 비해 늦으며 세포배양 6, 24시간후에도 시편에 밀착되지 못하고 박판상돌기가 가늘고 길게 돌출되어 여러면에 부착된 양상을 보였으며 세포가 부착되지 않은 TPS면이 관찰되었다.

  • PDF

Cytotoxicity of Impregnated Dental Gingival Retraction Cord Extracts in Immortalized Human Oral Fibroblasts and Keratinocytes in vitro

  • Myung-Jin Lee;Song-Yi Yang
    • 한국재료학회지
    • /
    • 제33권4호
    • /
    • pp.130-134
    • /
    • 2023
  • This study evaluated cell viability and cytokine release in immortalized human oral fibroblasts (hTERT-hNOFs) and keratinocytes (IHOK) exposed to a dental-impregnated gingival retraction cord. To prepare the extracts, dental gingival retraction cords impregnated with aluminum chloride hexahydrate were immersed in a cell culture medium for 24 h at 37 ℃. hTERT-hNOFs and IHOK were cultured for 24 h. The cell culture medium was removed and extracts of the dental gingival retraction cords were added. After incubation with the extract solution, cell viability was evaluated using an MTT assay. The levels of the cytokines IL-1α and IL-8 were measured in the supernatants of each cell type. The cell viability after exposure to the extract solution for 10 min exceeded 70 % in both cell types. The ET50 values for hTERT-hNOF and IHOK were 35.75 and 28.98 min, respectively. For IHOK, the IL-1α level was (5.35 ± 5.22) pg/mL at 10 min, (3.58 ± 5.38) pg/mL at 20 min, and (2.85 ± 4.28) pg/mL at 60 min of exposure (p > 0.05). The IL-8 level in IHOK was (67.16 ± 18.70) pg/mL at 10 min, (78.36 ± 7.50) pg/mL at 20 min, and (111.9 ± 26.10) pg/mL at 60 min of exposure (p > 0.05). Cytokine release was not observed from hTERT-hNOFs. Based on these results, cell viability and cytokine release were confirmed in cells exposed to the impregnated gingival retraction cord. In addition, the application of the extracts to hTERT-hNOF and IHOK during the actual contact time and determination of ET50 may be beneficial for evaluating the biocompatibility of dental-impregnated gingival retraction cords.

전기 자극이 치주인대세포와 치은섬유아세포에 미치는 영향 (Effect of the Electrical Stimulation on the Human Periodontal Ligament Cells and Gingival Fibroblasts)

  • 이욱;박준봉;이만섭;권영혁
    • Journal of Periodontal and Implant Science
    • /
    • 제29권4호
    • /
    • pp.821-838
    • /
    • 1999
  • On the basis of the evidences that electrical stimulation could enhance proliferation and differentiation of bone cells and promote healing and regeneration of bone, this study was performed to investigate the effects of electrical stimulation on human periodontal ligament cells and gingival fibroblasts in vitro, which also have important roles in regeneration of periodontium, and to evaluate the potential of clinical application of electrical stimulation. Human periodontal ligament cells and gingival fibroblasts were primarily cultured from the root surface of extracted premolar and the adjacent gingiva without periodontal diseases. In control group, the cells ($5{\times}10^4$ cells/ml)were incubated only in Dulbecco's Modified Eagle's Medium contained with 10% fetal bovine serum. In test groups, electrical stimulation was given at the current intensity of $0.25{\mu]A$(test group 1), $1.0{\mu}A$(test group 2), and $2.5{\mu}A$(test group 3) for 12 hours to the same culture media with the control group. After 12 hour exposure of electrical stimulation, the cells were incubated for 2 and a half days(60 hours), and then each group of cells was analyzed for cell proliferation, protein level, and activity of alkaline phosphatase. The results were as follows ; 1. The Rate of cell proliferation of every test group increased significantly in both periodontal ligament cells and gingival fibroblasts, and in periodontal ligament cells, test group 3 showed significantly increased proliferation compared to the other test groups(p<0.05). 2. In the protein levels, neither periodontal ligament cell nor gingival fibroblast showed statistically significant differences between control and test groups. 3. The activity of alkaline phosphatase in periodontal ligament cells increased significantly in all test groups(p<0.05), but there were no significant differences between 3 test groups. In gingival fibroblasts, the activity of alkaline phosphatase increased significantly only in test group 3(p<0.05). From the above results, it is concluded that electrical stimulation may have beneficial effects on the regeneration of destructed periodontal tissue in regard of the stimulation of periodontal ligament cells and gingival fibroblasts as well as electrically stimulated bone formation that has been known, and that electrical stimulation may have the potential of clinical application.

  • PDF

Expression of Senescence-Associated Secretory Phenotype in Senescent Gingival Fibroblasts

  • Sangim Lee
    • 치위생과학회지
    • /
    • 제23권2호
    • /
    • pp.169-175
    • /
    • 2023
  • Background: Although microbial infection is direct cause of periodontal disease, various environmental factors influence the disease severity. Aging is considered a risk factor for oral diseases, with the prevalence of periodontal diseases increasing with age. Moreover, senescence-associated secretory phenotype (SASP) expressed in age-related diseases is a key marker of chronic inflammation and aging phenotypes. Therefore, this study aimed to understand the relevance of senescent cells to periodontal health and disease, investigate the possibility of regulating the expression of aging- and osteolysis-related factors in gingival fibroblasts, and investigate the effect of senescence induction in gingival fibroblasts on osteoclast differentiation in mouse bone marrow-derived macrophages (BMMs). Methods: After stimulation with 400 nM hydrogen peroxidase, human gingival fibroblasts (HGFs) were examined for senescence-associated β-galactosidase. Western blot and enzyme-linked immunosorbent assays were performed to assess the expression of SASP. Osteoclast formation was assessed in BMMs using a conditioned medium (CM) from hydrogen peroxide-stimulated HGFs. Osteoclastic differentiation was investigated using tartrate-resistant acid phosphatase (TRAP) staining and activity. Data analysis was performed using SPSS version 25.0. Results: The expression of senescence-related molecules, including p53, p16, and p21, and the expression of osteolytic factors, including IL-6, IL-8, and IL-17, were found to be significantly higher in the hydrogen peroxide-stimulated HGF than in the control group. Regarding the indirect effects of senescent gingival cells, the number of osteoclasts and TRAP activity increased according to the differentiation of BMM cultured in CM. Conclusion: Our results on the of between osteolytic factors and cellular senescence in gingival fibroblast cells helped to reveal evidence of pathological aging mechanisms. Furthermore, our results suggest that the development of novel therapies that target specific SASP factors could be an effective treatment strategy for periodontal disease.