• Title/Summary/Keyword: Human genetics

Search Result 556, Processing Time 0.034 seconds

In vitro Cytotoxin Activity of Urushiol in the Sap of Rhus verniciflua STOKES (옻나무 칠액성분(漆液成分) 중 Urushiol의 암세포(癌細胞) 증식억제(增殖抑制) 효과(效果) - in vitro 세포독성효과(細胞毒性效果) -)

  • Na, Chun-Soo;Jung, Nam-Chul;Oh, Kwang-In
    • Journal of Korean Society of Forest Science
    • /
    • v.87 no.2
    • /
    • pp.260-269
    • /
    • 1998
  • This study was conducted to screen the biological activity of urushiol in the sap of lac tree(Rhus verniciflua STOKES) which has been used in traditional folk remedies. Cytotoxic activity of urushiol was screened with L1210(mouse luekemia cell), PC-9(human lung adenocarcinoma cell), A427(human lung adenocarcinoma cell) and KATO III (human stomach adenocarcinoma cell) The stepwise hexane : acetone eluent fractions of the urushiol were obtained by the silica gel adsorption column chromatography and added to the culture media containing L1210, PC-9. A427, and KATO III, respectively. A hexane : acetone(90 : 10, v/v) eluent fraction of them showed the lowest 50% inhibition concentration($IC_{50}$) of $0.018{\mu}g/m{\ell}$ for the cell line of A427. Much lower level of $IC_{50}$ of the hexane : acetone(90 : 10, v/v) eluent fraction of the urushiol showed the equal inhibition effect with tetraplatin(i.e., anti-cancer drug of platinum complexes) on the cancer cell lines as follows ; 3.4 times lower for L1210, 3.9 times lower for PC-9, and 105.5 times lower for A427. However, $IC_{50}$ of the hexane : acetone(90 : 10 v/v) eluent fraction for KATO III was exceptionally 3.9 times higher than that of tetraplatin.

  • PDF

Analysis of Thymosin β4 and Vascular Endothelial Cell Growth Factor (VEGF) Expression in Normal Human Tissues Using Tissue Microarray (Tissue microarray를 이용한 사이모신 베타4(Thymosin β4)와 vascular endothelial cell growth factor (VEGF)의 정상 인간 조직 발현 양상 연구)

  • Ock, Mee-Sun;Cha, Hee-Jae
    • Journal of Life Science
    • /
    • v.19 no.12
    • /
    • pp.1777-1786
    • /
    • 2009
  • Thymosin ${\beta}4$, a small protein containing 43 amino acids, has multi-functional roles in cell physiology. It was first identified as a thymic maturation factor and recently has been shown to accelerate wound healing, hair growth, angiogenesis, tumor growth, and metastasis. It was also reported to play a key role in developing organs, including the nervous system and heart. Thymosin ${\beta}4$ induces the expression of vascular endothelial cell growth factor (VEGF), laminin-5, and other important biologically active genes. Using tissue microarray analysis, we investigated the expression patterns of thymosin ${\beta}4$ and VEGF in various normal human adult tissues. Thymosin ${\beta}4$ was highly expressed in the liver, pancreas, ductal epithelium of the salivary gland, and heart, and moderately expressed in the skin, lung, spleen, lymph node, thymus, ureter, and blood endothelial cells in both the lung and adrenal gland. The expression of VEGF generally co-localized with thymosin ${\beta}4$ and VEGF was highly expressed in the pancreas, ureter, mammary gland, liver, esophagus, and blood endothelial cells in both the lung and adrenal gland. These results suggest that thymosin ${\beta}4$ plays an important role in the function of various organs and since the expression pattern of thymosin ${\beta}4$ co-localized with VEGF, part of that function may be to induce or maintain angiogenesis.

Epigenetic modification of long interspersed elements-1 in cumulus cells of mature and immature oocytes from patients with polycystic ovary syndrome

  • Pruksananonda, Kamthorn;Wasinarom, Artisa;Sereepapong, Wisan;Sirayapiwat, Porntip;Rattanatanyong, Prakasit;Mutirangura, Apiwat
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.43 no.2
    • /
    • pp.82-89
    • /
    • 2016
  • Objective: The long interspersed elements (LINE-1, L1s) are a group of genetic elements found in large numbers in the human genome that can translate into phenotype by controlling genes. Growing evidence supports the role of epigenetic in polycystic ovary syndrome (PCOS). The purpose of this study is to evaluate the DNA methylation levels in LINE-1 in a tissue-specific manner using cumulus cells from patients with PCOS compared with normal controls. Methods: The study included 19 patients with PCOS and 22 control patients who were undergoing controlled ovarian hyperstimulation. After oocyte retrieval, cumulus cells were extracted. LINE-1 DNA methylation levels were analysed by bisulfite treatment, polymerase chain reaction, and restriction enzyme digestion. The Connection Up- and Down-Regulation Expression Analysis of Microarrays software package was used to compare the gene regulatory functions of intragenic LINE-1. Results: The results showed higher LINE-1 DNA methylation levels in the cumulus cells of mature oocytes in PCOS patients, 79.14 (${\pm}2.66$) vs. 75.40 (${\pm}4.92$); p=0.004, but no difference in the methylation of cumulus cells in immature oocytes between PCOS and control patients, 70.33 (${\pm}4.79$) vs. 67.79 (${\pm}5.17$); p=0.155. However, LINE-1 DNA methylation levels were found to be higher in the cumulus cells of mature oocytes than in those of immature oocytes in both PCOS and control patients. Conclusion: These findings suggest that the epigenetic modification of LINE-1 DNA may play a role in regulating multiple gene expression that affects the pathophysiology and development of mature oocytes in PCOS.

ΔFY Mutation in Human Torsina Induces Locomotor Disability and Abberant Synaptic Structures in Drosophila

  • Lee, Dae-Weon;Seo, Jong Bok;Ganetzky, Barry;Koh, Young-Ho
    • Molecules and Cells
    • /
    • v.27 no.1
    • /
    • pp.89-97
    • /
    • 2009
  • We investigate the molecular and cellular etiologies that underlie the deletion of the six amino acid residues (${\Delta}F323-Y328$; ${\Delta}FY$) in human torsin A (HtorA). The most common and severe mutation involved with early-onset torsion dystonia is a glutamic acid deletion (${\Delta}E$ 302/303; ${\Delta}E$) in HtorA which induces protein aggregates in neurons and cells. Even though ${\Delta}FY$ HtorA forms no protein clusters, flies expressing ${\Delta}FY$ HtorA in neurons or muscles manifested a similar but delayed onset of adult locomotor disability compared with flies expressing ${\Delta}E$ in HtorA. In addition, flies expressing ${\Delta}FY$ HtorA had fewer aberrant ultrastructures at synapses compared with flies expressing ${\Delta}E$ HtorA. Taken together, the ${\Delta}FY$ mutation in HtorA may be responsible for behavioral and anatomical aberrations in Drosophila.

In Vitro Anticancer Activities of Anogeissus latifolia, Terminalia bellerica, Acacia catechu and Moringa oleiferna Indian Plants

  • Diab, Kawthar AE;Guru, Santosh Kumar;Bhushan, Shashi;Saxena, Ajit K
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.15
    • /
    • pp.6423-6428
    • /
    • 2015
  • The present study was designed to evaluate in vitro anti-proliferative potential of extracts from four Indian medicinal plants, namely Anogeissus latifolia, Terminalia bellerica, Acacia catechu and Moringa oleiferna. Their cytotoxicity was tested in nine human cancer cell lines, including cancers of lung (A549), prostate (PC-3), breast (T47D and MCF-7), colon (HCT-16 and Colo-205) and leukemia (THP-1, HL-60 and K562) by using SRB and MTT assays. The findings showed that the selected plant extracts inhibited the cell proliferation of nine human cancer cell lines in a concentration dependent manner. The extracts inhibited cell viability of leukemia HL-60 and K562 cells by blocking G0/G1 phase of the cell cycle. Interestingly, A. catechu extract at $100{\mu}g/mL$ induced G2/M arrest in K562 cells. DNA fragmentation analysis displayed the appearance of a smear pattern of cell necrosis upon agarose gel electrophoresis after incubation of HL-60 cells with these extracts for 24h.

Inhibitory Effects of Ninety Nine Korean Plants on Human Immunodeficiency Virus Type 1 Pretense Activity

  • Park, Jong-Cheol;Hur, Jong-Moon;Park, Ju-Gwon;Hyun, Kyu-Hawn;Lee, Kab-Yeon;Hirotsugu Miyashiro;Masao Hattori
    • Preventive Nutrition and Food Science
    • /
    • v.7 no.2
    • /
    • pp.123-127
    • /
    • 2002
  • Ninety nine extracts from Korean plants were screened for their inhibitory activities on human immunodeficiency virus (HIV) type 1 pretense by an HPLC method. The pretense inhibitory activities were determined by incubating the extracts in reaction mixtures containing pretense and substrate (His-Lys-Ala-Arg-Val-Leu-(p-NO$_2$- Phe)-Glu-Ala-Nle-Ser-NH$_2$) to perform proteolytic cleavage reactions. Of the extracts tested, the water extracts of Viburnum awabuki (stem and leaves) and Distylium racemosum (leaves) had the highest pretense inhibitory activities at a concentration of 100ug/mL. Activity-guided fractionation, revealed that the n-butanol fraction of the V. awabuki extract and the ethyl acetate fraction from the D. racemosum extract had the greatest inhibitory activity on HIV-1 pretense.

Recent advances in genetic studies of stuttering

  • Kang, Changsoo
    • Journal of Genetic Medicine
    • /
    • v.12 no.1
    • /
    • pp.19-24
    • /
    • 2015
  • Speech and language are uniquely human-specific traits, which contributed to humans becoming the predominant species on earth. Disruptions in the human speech and language function may result in diverse disorders. These include stuttering, aphasia, articulation disorder, spasmodic dysphonia, verbal dyspraxia, dyslexia and specific language impairment. Among these disorders, stuttering is the most common speech disorder characterized by disruptions in the normal flow of speech. Twin, adoption, and family studies have suggested that genetic factors are involved in susceptibility to stuttering. For several decades, multiple genetic studies including linkage analysis were performed to connect causative gene to stuttering, and several genetic studies have revealed the association of specific gene mutation with stuttering. One notable genetic discovery came from the genetic studies in the consanguineous Pakistani families. These studies suggested that mutations in the lysosomal enzyme-targeting pathway genes (GNPTAB, GNPTG and NAPGA) are associated with non-syndromic persistent stuttering. Although these studies have revealed some clues in understanding the genetic causes of stuttering, only a small fraction of patients are affected by these genes. In this study, we summarize recent advances and future challenges in an effort to understand genetic causes underlying stuttering.

Frequency of the Angiotensin - Converting Enzyme (ACE) Gene Polymorphism in the General Population and the Elite Endurance Students in Korea

  • Choung, Ho-Jin;Yoon, Song-Ro;Choi, Soo-Kyung
    • Journal of Genetic Medicine
    • /
    • v.3 no.1
    • /
    • pp.11-13
    • /
    • 1999
  • Recently it was reported that Insertion/Deletion polymorphism in the gene coding for Angiotensin-Converting Enzyme (ACE) is associated with human capacity for physical performance. This study was performed to genotyping of the ACE gene to determine the correlation between elite endurance performance and ACE I/D gene polymorphism. DNA sample was obtained from peripheral blood, hair roots and mouth epithelial cell in 739 general population and 200 elite athletic performance students. The ACE gene was amplified by polymerase chain reaction (PCR) using allele specific oligonucleotide primers. 155, 525 bp and 237 bp PCR products indicating the presence of insertion(I) and deletion(D) alleles, respectively, were clearly resolved after electrophoresis on a 2% agarose gel with ethidium bromide. Of the 200 elite athletic performance population subjects, 68(34%) showed ACE genotype 11,100(50%) genotype ID and 32(16%) genotype DD. Of the 739 general population subjects, 259(35.1%) showed ACE genotype 11,363(49.1%) genotype ID and 117(15.8%) genotype DD. Therefore ACE I/D gene polymorphism was not associated with human capacity for physical performance.(p>0.05)

  • PDF

Dikkopf-1 promotes matrix mineralization of osteoblasts by regulating Ca+-CAMK2A- CREB1 pathway

  • Hyosun, Park;Sungsin, Jo;Mi-Ae, Jang;Sung Hoon, Choi;Tae-Hwan, Kim
    • BMB Reports
    • /
    • v.55 no.12
    • /
    • pp.627-632
    • /
    • 2022
  • Dickkopf-1 (DKK1) is a secreted protein that acts as an antagonist of the canonical WNT/β-catenin pathway, which regulates osteoblast differentiation. However, the role of DKK1 on osteoblast differentiation has not yet been fully clarified. Here, we investigate the functional role of DKK1 on osteoblast differentiation. Primary osteoprogenitor cells were isolated from human spinal bone tissues. To examine the role of DKK1 in osteoblast differentiation, we manipulated the expression of DKK1, and the cells were differentiated into mature osteoblasts. DKK1 overexpression in osteoprogenitor cells promoted matrix mineralization of osteoblast differentiation but did not promote matrix maturation. DKK1 increased Ca+ influx and activation of the Ca+/calmodulin-dependent protein kinase II Alpha (CAMK2A)-cAMP response element-binding protein 1 (CREB1) and increased translocation of p-CREB1 into the nucleus. In contrast, stable DKK1 knockdown in human osteosarcoma cell line SaOS2 exhibited reduced nuclear translocation of p-CREB1 and matrix mineralization. Overall, we suggest that manipulating DKK1 regulates the matrix mineralization of osteoblasts by Ca+-CAMK2A-CREB1, and DKK1 is a crucial gene for bone mineralization of osteoblasts.

The Genetic Analysis Study of Ancient Human Bones Excavated at Janggi-dong site, Gimpo (김포 장기동 유적 출토 인골의 유전자 분석 연구)

  • Seo, Min Seok;Cho, Eun Min;Kim, Yun Ji;Kim, Sue Hoon;Kang, So Yeong
    • Journal of Conservation Science
    • /
    • v.30 no.4
    • /
    • pp.409-416
    • /
    • 2014
  • Most human bones of Joseon Dynasty period are so good condition that we can do research in physical anthropology, genetics and chemistry with them. In this study, we analyzed DNA typing using 6 human bones of Joseon dynasty period excavated at Janggi-dong, Gimpo. The DNA typing was mitochondrial DNA haplotype, Y-chromosome haplotype and sex determination. Prior to DNA analysis, we distinguished histological index of 6 human bones. As the result of mitochondrial DNA analysis, most of bones were confirmed as haplogroup G, R11, M7, A5, etc. As the result of sex determination, 4 human bones were female and 2 human bones were male. The male haplogroup was confirmed as haplogroup O by the single nucleotide polymorphism analysis of Y chromosome. For extensive ancient human bone analysis, researchers need to apply a histological index to select ancient human bones and explain a relationship among ancient human bones with various analyses of mitochondrial and nuclear DNA.