• Title/Summary/Keyword: Human fibroblast cells

Search Result 543, Processing Time 0.023 seconds

Inhibitory Effects of Yanghyelyoonbutang (YHYBT) on Allergic Reaction and Pro-Inflammatory Cytokines in Various Cell Lines (양혈윤부탕(養血潤膚湯)의 면역(免疫) 조절작용(調節作用)을 통한 항알러지 효능(效能))

  • Lee, Kyoung-Mee;Koo, Young-Sun;Kim, Dong-Hee
    • Journal of Haehwa Medicine
    • /
    • v.15 no.2
    • /
    • pp.121-134
    • /
    • 2006
  • This study saw the anti-allergy effect by the immunity regulation action of Yanghyelyoonbotang (YHYBT) consists 12 kinds of herbal medicine agents. Consequently, YHYBT controlled the amount of secretion of various infla- mmatory cytokines, chemokine, monocyte chemotactic protein and histamine from cells (HMC-1, THP-1, EoL-1) stimulated by PMA, A23187 or HDM. 1. YHYBT did not show cytotoxicity on cultured human fibroblast cells under 250 ${\mu}g/m\ell$ concentration. 2. YHYBT suppressed IL-8, TNF-$\alpha$, IL-6 mRNA expression in the HMC-1 cell stimulated with PMA and A23187. 3. YHYBT significantly suppressed IL-6 release in the THP-1 and EoL-1 cell stimulated with HDM. 4. YHYBT significantly suppressed histamine release in the HMC-1 cell stimulated with PMA and A23187 in a dose-dependent. 5. YHYBT significantly suppressed $\beta$-Hexosaminidase release in the HMC-1 cell stimulated with A23187 in a dose-dependent. 6. YHYBT suppressed NF-$\kappa$B gene expression in the RBL-2H3 cell stimulated with PMA in a dose-dependent. These results suggested that YHYBT has suppressive effects on allergic reaction and pro-inflammatory cytokines in various cell lines through the regulation of immune system. YHYBT has potential to use as an antiallergic agents.

  • PDF

Enhancement of Antioxidant Activities and Whitening Effect of Acer mono Sap Through Nano Encapsulation Processes (고로쇠 수액 나노입자의 항산화 활성 및 미백 효과의 증진)

  • Kim, Ji-Seon;Seo, Yong-Chang;Choi, Woon-Yong;Kim, Hack-Soo;Kim, Bo-Hyeon;Shin, Dae-Hyeon;Yoon, Chang-Soon;Lim, Hye-Won;Ahn, Ju-Hee;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.19 no.3
    • /
    • pp.191-197
    • /
    • 2011
  • In this study, we investigated antioxidant activities and whitening effects of Acer mono sap by encapsulation of nanoparticles. Acer mono sap was through ultra high pressure process and then encapsulated by lecithin. Nano-encapsulated The nanoparticles of Acer mono sap showed highest free radical scavengering effect as 89.7% in adding sample (1.0 mg/ml), compared to sap of non-encapsulation. It was showed strong inhibition effect on melanin production test by Clone M-3 cells as 47.8%. High inhibitory of tyrosinase was also measured as 85.8% by adding lecithin nano-particle of 1.0 mg/ml. The nano-particles also showed 14.8% of low cytotoxicity against human normal fibroblast cells in adding 1.0 mg/ml of the highest concentration. These results indicate that Acer mono sap may be a source of cosmetic agents capable of improving whitening effect and antioxidant activites.

Effects of four novel root-end filling materials on the viability of periodontal ligament fibroblasts

  • Akbulut, Makbule Bilge;Arpaci, Pembegul Uyar;Eldeniz, Ayce Unverdi
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.3
    • /
    • pp.24.1-24.12
    • /
    • 2018
  • Objectives: The aim of this in vitro study was to evaluate the biocompatibility of newly proposed root-end filling materials, Biodentine, Micro-Mega mineral trioxide aggregate (MM-MTA), polymethylmethacrylate (PMMA) bone cement, and Smart Dentin Replacement (SDR), in comparison with contemporary root-end filling materials, intermediate restorative material (IRM), Dyract compomer, ProRoot MTA (PMTA), and Vitrebond, using human periodontal ligament (hPDL) fibroblasts. Materials and Methods: Ten discs from each material were fabricated in sterile Teflon molds and 24-hour eluates were obtained from each root-end filling material in cell culture media after 1- or 3-day setting. hPDL fibroblasts were plated at a density of $5{\times}10^3/well$, and were incubated for 24 hours with 1:1, 1:2, 1:4, and 1:8 dilutions of eluates. Cell viability was evaluated by XTT assay. Data was statistically analysed. Apoptotic/necrotic activity of PDL cells exposed to material eluates was established by flow cytometry. Results: The Vitrebond and IRM were significantly more cytotoxic than the other root-end filling materials (p < 0.05). Those cells exposed to the Biodentine and Dyract compomer eluates showed the highest survival rates (p < 0.05), while the PMTA, MM-MTA, SDR, and PMMA groups exhibited similar cell viabilities. Three-day samples were more cytotoxic than 1-day samples (p < 0.05). Eluates from the cements at 1:1 dilution were significantly more cytotoxic (p < 0.05). Vitrebond induced cell necrosis as indicated by flow cytometry. Conclusions: This in vitro study demonstrated that Biodentine and Compomer were more biocompatible than the other root-end filling materials. Vitrebond eluate caused necrotic cell death.

Evaluation of Toxicity and Gene Expression Changes Triggered by Quantum Dots

  • Dua, Pooja;Jeong, So-Hee;Lee, Shi-Eun;Hong, Sun-Woo;Kim, So-Youn;Lee, Dong-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1555-1560
    • /
    • 2010
  • Quantum dots (QDs) are extensively employed for biomedical research as a fluorescence reporter and their use for various labeling applications will continue to increase as they are preferred over conventional labeling methods for various reasons. However, concerns have been raised over the toxicity of these particles in the biological system. Till date no thorough investigation has been carried out to identify the molecular signatures of QD mediated toxicity. In this study we evaluated the toxicity of CdSe, $Cd_{1-x}Zn_xS$/ZnS and CdSe/ZnS quantum dots having different spectral properties (red, blue, green) using human embryonic kidney fibroblast cells (HEK293). Cell viability assay for both short and long duration exposure show concentration material dependent toxicity, in the order of CdSe > $Cd_{1-x}Zn_xS$/ZnS > CdSe/ZnS. Genome wide changes in the expression of genes upon QD exposure was also analyzed by wholegenome microarray. All the three QDs show increase in the expression of genes related to apoptosis, inflammation and response towards stress and wounding. Further comparison of coated versus uncoated CdSe QD-mediated cell death and molecular changes suggests that ZnS coating could reduce QD mediated cytotoxicity to some extent only.

Puerariae Radix Induces Angiogenesis in vitro and in vivo

  • Choi, Do-Young;Kang, Jung-Won;Cho, Eun-Mi;Lee, Jae-Dong;Huh, Jeong-Eun;Yang, Ha-Ru;Baek, Yong-Hyeon;Kim, Deog-Yoon;Cho, Yoon-Je;Kim, Kang-Il;Park, Dong-Suk
    • Journal of Acupuncture Research
    • /
    • v.22 no.2
    • /
    • pp.171-180
    • /
    • 2005
  • Background & Objective : Angiogenesis consists of the proliferation, migration, and differentiation of endothelial cells, and angiogenic factors and matrix protein interactions modulate this process. The aim of this study was to determine whether Puerariae radix could induce angiogenic activity in human umbilical vein endothelial cells (HUVECs). Methods: The angiogenic activity of Puerariae radix were evaluated by using BrdU assay, chemotactic migration assay, tube formation assay, measurement of bFGF in HUVECs, and Matrigel plug assay in mice. Results : Puerariae radix significantly increased HUVECs proliferation in a dose-dependent manner. In addition, Puerariae radix increased migration and tube-like formation in HUVECs. Interestingly,the expression of basic fibroblast growth factor (bFGF), an angiogenesis-stimulating growth factor, was dose-dependently increased by Puerariae radix. The angiogenic activity of Puerariae radix was confirmed using an in vivo Matrigel angiogenesis model, showing promotion of blood vessel formation. Conclusion : Puerariae radix significantly induces angiogenesis in vitro and in vivo. These results suggest that Puerariae radix is a potent angiogenic agent, and a promising drug, for the induction of neovascularization.

  • PDF

Ginsenoside Rg3 protects against iE-DAP-induced endothelial-to-mesenchymal transition by regulating the miR-139-5p-NF-κB axis

  • Lee, Aram;Yun, Eunsik;Chang, Woochul;Kim, Jongmin
    • Journal of Ginseng Research
    • /
    • v.44 no.2
    • /
    • pp.300-307
    • /
    • 2020
  • Background: Emerging evidence suggests that endothelial-to-mesenchymal transition (EndMT) in endothelial dysfunction due to persistent inflammation is a key component and emerging concept in the pathogenesis of vascular diseases. Ginsenoside Rg3 (Rg3), an active compound from red ginseng, has been known to be important for vascular homeostasis. However, the effect of Rg3 on inflammation-induced EndMT has never been reported. Here, we hypothesize that Rg3 might reverse the inflammation-induced EndMT and serve as a novel therapeutic strategy for vascular diseases. Methods: EndMT was examined under an inflammatory condition mediated by the NOD1 agonist, γ-d-glutamyl-meso-diaminopimelic acid (iE-DAP), treatment in human umbilical vein endothelial cells. The expression of EndMT markers was determined by Western blot analysis, real-time polymerase chain reaction, and immunocytochemistry. The underlying mechanisms of Rg3-mediated EndMT regulation were investigated by modulating the microRNA expression. Results: The NOD1 agonist, iE-DAP, led to a fibroblast-like morphology change with a decrease in the expression of endothelial markers and an increase in the expression of the mesenchymal marker, namely EndMT. On the other hand, Rg3 markedly attenuated the iE-DAP-induced EndMT and preserved the endothelial phenotype. Mechanically, miR-139 was downregulated in cells with iE-DAP-induced EndMT and partly reversed in response to Rg3 via the regulation of NF-κB signaling, suggesting that the Rg3-miR-139-5p-NF-κB axis is a key mediator in iE-DAP-induced EndMT. Conclusion: These results suggest, for the first time, that Rg3 can be used to inhibit inflammation-induced EndMT and may be a novel therapeutic option against EndMT-associated vascular diseases.

Comparison on Cosmetic Activities of Acer mono Bark and Sap (고로쇠 나무의 수피와 수액의 향장활성 비교)

  • Seo, Yong-Chang;Kim, Ji-Seon;Choi, Woon-Yong;Cho, Jeong-Sub;Lim, Hye-Won;Yoon, Chang-Soon;Ma, Choong-Je;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.19 no.4
    • /
    • pp.264-270
    • /
    • 2011
  • In this study, we investigated the cosmetic application of Acer mono sap through an ultra-high pressure process. Exposing Acer mono sap to a ultra-high pressure process resulted in 90.1% cell viability of human normal fibroblast cells (CCD-986sk) when added at the highest concentration. Acer mono sap also showed the hightest free radical scavenging activity after the ultra high pressure process. The melanogenesis inhibition rate in cloned M-3 cells was 59.0%. Tyrosinase was inhibited at a rate of 87.2% by adding 100% HPAMS. Anti-wrinkle activity was 78.1%. Acer mono sap showed enhanced storage following the ultra high pressure process. These results indicate that Acer mono sap may be a source for functional cosmetic agents capable of improving antioxidant, whitening, and antiwrinkling effects.

Cytotoxicity of the Methanol Extract of Crotalariae sessiliflorae L. (농길리 메탄올 추출물의 세포독성)

  • Han Du-Seok;Chung Woo-Young;Park Myung-Oh;Shin Min-Kyo;Oh Hyun-Ju;Baek Seung-Hwa
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.5 no.1
    • /
    • pp.144-150
    • /
    • 2001
  • The cytotoxic activity of Cratalariae sessiliflorae on cultured NIH 3T3 fibroblasts and human oral epithelioid carcinoma cells (KB) were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazoliumbromide (MTT) colorimetric method These fractions of methanol extract of Cratalariae sessiliflorae showed inhibitory effect in vitro in the milligram range against KB cell lines. In general, the antitumor activities of these fractions were does-dependent over the milligram range. The comparison of IC50 values of these fractions in tumor cell lines showed that their susceptibility to these fractions decrease in the following order: Fr. 4> Fr. 6> Fr. 10> Fr. 2> Fr. 11> Fr. 3> Fr. 8> Fr. 7> Fr. 9> Fr. 1> Fr. 5 by the MTT assay. These fractions were tested for their cytotoxic effects on NIH 3T3 fibroblasts using MTT assay. They exhibited potent cytotoxic activities in vitro in the milligram range against NIH 3T3 fibroblasts. In general, the cytotoxic activities of these fractions were does-dependent over the milligram range. The comparison of CD50 values of these fractions in NIH 313 fibroblasts shows that their susceptibility to these fractions in decrease the following order: Fr. 10> Fr. 9> Fr. 2 = Fr. 4> Fr. 8> Fr. 11> Fr. 1 = Fr. 7> Fr. 3> Fr. 5 = Fr. 6 by the MTT assay. These results suggests that fraction 5 has the most growth - inhibitory activity against KB cell lines.

  • PDF

Ferment Red Ginseng Suppresses the Expression of Matrix Metalloproteinases in UVA-irradiated Human Dermal Fibroblast Cells (발효홍삼의 인간진피섬유모세포에서 UVA로 유도한 염증 및 기질단백분해효소 발현 억제 효능)

  • Lee, Keun-Hyeun;Jeong, Seung-Il;Lee, Chang-Hyun;Shin, Sang Woo;Jeong, Han-Sol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.31 no.2
    • /
    • pp.105-110
    • /
    • 2017
  • Prolonged exposure to solar ultraviolet A (UVA) radiation has been known to cause premature skin aging (photo-aging). UVA radiation generates ROS thereby induce degenerative changes of skin such as degradation of dermal collagen, elastic fibers. Matrix metalloproteinases (MMPs), the proteolytic enzymes have been implicated as a major player in the development of UVA-induced photo-aging. Many studies have been conducted to block the harmful effects of UV radiation on the skin. Recently, we are interested in the availability of fermented red ginseng (FRG) as natural matrix metalloproteinases inhibitors (MMPIs). The efficacy difference between red ginseng and FRG has been compared. Both RG and FRG have no cytotoxic effects below the concentration of $300{\mu}g/ml$. Human dermal fibroblasts (HDFs) were pretreated with FRG or RG for 24h, followed by irradiation of UVA. Then, we measured the intracellular ROS production and the expression of MMP, $IL-1{\beta}$ at the mRNA level. We also examined the intracellular localization of $NF-{\kappa}B$ and MMP-9 on the FRG or RG treated and UVA-irradiated HDFs. FRG decreased the intracellular ROS production elicited by UVA. In addition, FRG decreased the mRNA expression of MMP-3, MMP-9, and $IL-1{\beta}$ more efficiently than RG. Furthermore, FRG suppressed the nuclear localization of $NF-{\kappa}B$, and the expression of MMP-9. Taken together, our results suggest that FRG is promising agents to prevent UVA-induced photo-aging by suppressing MMP expression and inflammation.

Enhancement of Immuno-modulatory of Centella asiatica L. Urban with Edible Polymer through Nano-encapsulation Process (병풀 추출물의 식용 나노입자화를 통한 면역 활성 증진)

  • Ha, Ji-Hye;Kwon, Min-Chul;Kim, Young;Jeong, Seung-Seop;Jeong, Myoung-Hoon;Hwang, Baik;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.4
    • /
    • pp.257-265
    • /
    • 2009
  • Phosphatidylcholine was used to encapsulate aqueous extracts of Centella asiatica, and its biological activity was compared with another aqueous extracts. Nanoparticle of C. asiatica was made by encapsulation to w/o type spherical liposome which of aqueous extracts seized with oil phase as 78.2 nm average diameter. Cytotoxicity of the nanoparticle was measured on human skin fibroblast cells, CCD-986sk, and showed lower cytotoxicity on 1.0 mg/$m{\ell}$ of highest concentration as 28% than that of another extracts. The nanoparticle showed the highest promotion of human B and T cell growth up to 138% and 135%, respectively, compared to the control. and the NK cell growth was promoted up to 8% higher than the control in proportion to secretion of IL-6 and TNF-$\alpha$ from immune cell growth. Also nanoparticle showed highest inhibition activity of hyaluronidase on 1.0 mg/$m{\ell}$ of highest concentration as 60.5%. It seems that because of enhanced biological application of aqueous extracts on cell through nano-encapsulation process.