• Title/Summary/Keyword: Human estrogen receptor

Search Result 182, Processing Time 0.024 seconds

Estrogen Modulation of Human Breast Cancer Cell Growth

  • Lee, Hyung-Ok;Sheen, Yhun-Yhong
    • Archives of Pharmacal Research
    • /
    • v.20 no.6
    • /
    • pp.566-571
    • /
    • 1997
  • To gain further insight into how estrogens modulate cell function, the effects of estrogen on cell proliferation were studied inhuman breast cancer cells. We examined the effects of estrogen on the proliferation of three human breast cancer cell lines that differed in their estrogen receptor contents. Ten nM estradiol markedly stimulated the proliferation of MCF-7 human breast cancer cells that contained high levels of estrogen receptor $1.15{\pm}0.03 pmole/mg protein)$(over that of control. In T47D cells that contained low levels of estrogen receptor $0.23{\pm}0.05 pmole/mg protein)$, Ten nM estrogen slightly stimulated the proliferation over that of control. MDA-MB-231 cells, that contained no detectable levels of estrogen receptors, had their growth unaffected by estrogen. These results showed their sensitivity to growth stimulation by estrogen correlated well with their estrogen receptor content. Also we examined the effect of estrogen on cellular progesterone receptor level as well as plasminogen activator activity in MCF-7 cells. Ten nM estradiol showed maximal stimulation of progesterone receptor level as well as plasminogen activator activity in MCF-7 cells. It is not clear whether these stimulations of progesterone receptor and plasminogen activator activity by estrogen are related to the estrogen stimulation of cell proliferation of MCF-7 cells. Studies with estrogen in human breast cancer cells in culture indicate that sensitivity to growth stimulation by estrogen correlates well with estrogen receptor contents.

  • PDF

Estrogen Receptor Enhances the Antiproliferative Effects of Trichostatin A and HC-toxin in Human Breast Cancer Cells

  • Min, Kyung-Nan;Cho, Min-Jung;Kim, Dae-Kee;Sheen, Yhun-Yhong
    • Archives of Pharmacal Research
    • /
    • v.27 no.5
    • /
    • pp.554-561
    • /
    • 2004
  • Trichostatin A, an antifungal antibiotics, and HC-toxin are potent and specific inhibitors of histone deacetylase activity. Histone deacetylase inhibitors are new class of chemotherapeutic drugs able to induce tumor cell apoptosis and/or cell cycle arrest. In this study, the antiproliferative activities of trichostatin A and HC-toxin were compared between estrogen receptor positive human breast cancer cell MCF-7 and estrogen receptor negative human breast cancer cell MDA-MB-468. Trichostatin A and HC-toxin showed potent antiproliferative activity in both MCF-7 and MDA-MB-468 cells. In MCF-7 cells that contain high level estrogen receptor, trichostatin A and HC-toxin brought about three-times more potent cell growth inhibitory effect than estrogen receptor negative MDA-MB-468 cells. Both trichostatin A and HC-toxin showed cell cycle arrest at G$_2$/M phases of MCF-7 and MDA-MB-468 cells in a dose- and time- depen- dent manner. Trichostatin A and HC-toxin also induced apoptosis from MCF-7 and MDA-MB-468 cells in a dose- and time-dependent manner. Results of this study suggested that antipro-liferative effects of trichostatin A and HC-toxin might be involved in estrogen receptor signaling pathway, but cell cycle arrest and apoptosis of trichostatin A and HC-toxin might not be involved in estrogen receptor system of human breast cancer cells.

Antiestrogen, Trans-Tamoxifen Modulation of Human Breast Cancer Cell Growth

  • Lee, Hyung-Ok;Sheen, Yhun-Yhong
    • Archives of Pharmacal Research
    • /
    • v.20 no.6
    • /
    • pp.572-578
    • /
    • 1997
  • To gain further insight into how antiestrogens modulate cell function, the effects of antiestrogen on cell proliferation were studied in human breast cancer cells. We examined the effects of trans-tamoxifen on the proliferation of three human breast cancer cell lines that differed in their estrogen receptor contents. Trans-tamoxifen $(1{\mu}M)$ markedly inhibited the estrogen stimulated proliferation of MCF-7 human breast cancer cells that contained high levels of estrogen receptor $(1.15{\pm}0.03 pmole/mg protein)$ over that of control. In T47D cells that contained low levels of estrogen receptor $(0.23{\pm}0.05 pmole/mg protein)$, trans-tamoxifen $(1{\mu}M)$ showed minimal inhibition of estrogen stimulated cell proliferation over that of control. MDA-MB-231 cells, that contained no detectable levels of estrogen receptors, had their growth unaffected by trans-tamoxifen treatment. These results showed their sensitivity to growth inhibition by antiestrogen conrrelated well with their estrogen receptor content. Also we examined the effect of antiestrogen on cellular progestrone receptor level as well as plasminogen activator activity in MCF-7 cells. Trans-tamoxifen $(1{\mu}M)$ showed maximal inhibition of estrogen stimulated progestrone receptor level as well as plasminogen activator activity in MCF-7 cells that were stimulated by estrogen. It is not clear whether these inhibitions of progestrone receptor and plasminogen activator activity by estrogen are related to the antiestrogen inhibition of cell proliferation of MCF-7 cells. From the results of this study, it is clearly demonstrated that trans-tamoxifen is an antiestrogen in MCF-7 human breast cancer cells. Our data suggest that the biological effectiveness of trans-tamoxifen appear to result from its affinity of interaction with the estrogen receptor.

  • PDF

Antiestrogen Interaction with Estrogen Receptors and Additional Antiestrogen Binding sites in Human Breast Cancer MCF-7 Cells

  • Ahn, Mee-Ryung;Sheen, Yhun-Yhong
    • Archives of Pharmacal Research
    • /
    • v.20 no.6
    • /
    • pp.579-585
    • /
    • 1997
  • To gain further insight into the mechanism of action of antiestrogens, we examined the interaction of antiestrogen with the estrogen receptor system and with estrogen- noncompetable antiestrogen binding sites. In addition to binding directly to the estrogen receptor, antiestrogens can be found associated with binding sites that are distinct from the estrogen receptor. In contrast to the restriction of estrogen receptors to estrogen target cells, such as those of uterus and mammary glands, antiestrogen binding sites are present in equal amounts in estrogen receptor-positive and -negative human breast cancer cell lines, such as MCF-7, T47D, and MDA-MB-231 that differ markedly in their sensitivity to antiestrogens. In order to gain greater insight into the role of these antiestrogen binding sites in the action of antiestrogens, we have examined the biopotency of different antiestrogens for the antiestrogen binding sites and that is CI628 > tamoxifen > trans-hydroxy tamoxifen > CI628M > H1285 > LY117018. This order of affinities does not parallel the affinity of these compounds for the estrogen receptor nor the potency of these compounds as antiestrogens. Indeed, compounds with high affinity for the estrogen receptor and greatest antiestrogenic potency have low affinities for these antiestrogen binding sites. Antiestrogenic potency correlates best with estrogen receptor affinity and not with affinity for antiestrogen binding sites. In summary, our findings suggested that interaction with the estrogen receptor is most likely the mechanism through which antiestrogens evoke their growth inhibitory effects.

  • PDF

Improvement of the Biosensor for Detection of Endocrine Disruptors by Combination of Human Estrogen Receptorα and Co-Activator (Human Estrogen Receptor α와 Co-activator로 구성된 바이오센서를 이용한 내분비계장애물질의 검출)

  • Lee, Haeng-Seog
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.6
    • /
    • pp.893-904
    • /
    • 2006
  • To improve sensitivity of biosensor as yeast two-hybrid detection system for estrogenic activity of suspected chemicals, we tested effects of several combinations of the bait and fish components in the two-hybrid system on Saccharomyces cerevisiae inducted a chromosome-integrated lacZ reporter gene that was under the control of CYC1 promoter and the upstream Gal4p-binding element $UAS_{GAL}$. The bait components that were fused with the Gal4p DNA binding domain are full-length human estrogen receptor ${\alpha}$ and its ligand-binding domain. The fish components that were fused with the Gal4p transcriptional activation domain were nuclear receptor-binding domains of co-activators SRC1 and TIF2. We found that the combination of the full-length human estrogen receptor ${\alpha}$ with the nuclear receptor-binding domain of co-activator SRC1 was most effective for the estrogen-dependent induction of reporter activity among the two-hybrid systems so far reported. The relative strength of transcriptional activation by representative natural and xenobiotic chemicals was well correlated with their estrogenic potency that had been reported with other assay systems.

Modification of Estrogenic Effect of Nonylphenol Combined with DEHP in Yeast-based Bioassay (형질전환효모를 이용한 내분비계장애물질검색과 Nonylphenol의 Estrogen 유사작용에 대한 DEHP의 상협작용)

  • 박미선;정해관;박현신;한의식;김종원;엄미옥;정상희;오혜영
    • Toxicological Research
    • /
    • v.17 no.1
    • /
    • pp.65-71
    • /
    • 2001
  • The key targets of endocrine disruptors are nuclear hormone receptors, which bind to steroid hormones and regulate their gene transcription. A yeast-based steroid hormone receptor gene trascription assay was previously developed for the evaluation of chemicals with endocrine modulating activity. The yeast transformants used in this assay contain the human estrogen receptor along with the appropriate steroid response elements upstream of the $\beta$-galactosidase reporter gene. We tried to evaluate several natural and synthetic steroids of their potential to interact directly with the steroid receptor. Some putative endocrine disruptors, including nonylphenol, are weakly estrogenic. But the combined treatment oj these chemicals with di-(2-ethylhexyl)phthalate (DEHP) significantly increased the $\beta$-galactosidase activity in the yeast transformant. These results suggest that we also have to consider the synergistic effects of endocrine disruptors. In this study, we showed that yeast-based bioassay is a valuable tool for screening potential endocrine disruptors and quantitative determination of estrogenicity. And the possibility that the estrogen receptor binds multiple environmental chemicals adds another level of complexity to the interaction between the endocrine disruptors and the human hormone system.

  • PDF

Effects of $17{\beta}$-Estradiol and Estrogen Receptor Antagonists on the Proliferation of Gastric Cancer Cell Lines

  • Kim, Myung-Jin;Cho, Sung-Il;Lee, Kun-Ok;Han, Hyung-Joon;Song, Tae-Jin;Park, Seong-Heum
    • Journal of Gastric Cancer
    • /
    • v.13 no.3
    • /
    • pp.172-178
    • /
    • 2013
  • Purpose: The aims of this study were as follow: 1) to de scribe the expression status of estrogen receptor-${\alpha}$ and -${\beta}$ mRNAs in five gastric carcinoma cell lines; 2) to evaluate in vitro the effects of $17{\beta}$-estradiol and estrogen receptor antagonists on the proliferation of the cell lines. Materials and Methods: Detection of estrogen receptor-${\alpha}$ and estrogen receptor-${\beta}$ mRNA in five human gastric cancer cell lines (AGS, KATO III, MKN28, MKN45 and MKN74) was made by the reverse transcription-polymerase chain reaction system. To evaluate the effect of $17{\beta}$-estradiol and estrogen receptor antagonists on the proliferation of gastric cancer cell line, the cell lines which expressed both es trogen receptors were chosen and treated with $17{\beta}$-estradiol and estrogen receptor antagonists (methyl-piperidino-pyrazole and pyrazolo [1,5-a] pyrimidine). Cell proliferation was assessed with the methylthiazol tetrazolium test. Results: Estrogen receptor-${\alpha}$ and estrogen receptor-${\beta}$ mRNAs were expressed in three (KATO III, MKN28 and MKN45) and all of the five gastric cancer cell lines, respectively. At higher concentrations, $17{\beta}$-estradiol inhibited cell growth of MKN28, MKN45 and KATO III cell lines. Neither estrogen receptor-${\alpha}$ nor estrogen receptor-${\beta}$ antagonist blocked the anti-proliferative effect of $17{\beta}$-estradiol. Conclusions: Our results indicate that estrogen receptor-${\beta}$ mRNAs are preferentially expressed in gastric cancers and also imply that hormone therapy rather than estrogen receptor blockers may be a useful strategy for the treatment of estrogen receptor-${\beta}$ positive gastric cancer. Its therapeutic significance in gastric cancer are, however, limited until more evidence of the roles of estrogen receptors in the gastric cancer are accumulated.

Mechanisms of Inhibitory Ah Receptor-Estrogen Receptor Crosstalk in Breast Cancer Cells

  • Safe, Stephen H.
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.23-23
    • /
    • 2003
  • 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and other aryl hydrocarbon (AhR) ligands suppress 17${\beta}$-estradiol (E)-induced responses in the rodent uterus and mammary tumors and in human breast cancer cells. Treatment of ZR-75, T47D and MCF-7 human breast cancer cells with TCDD induces proteasome-dependent degradation of endogenous estrogen receptor ${\alpha}$ (ER${\alpha}$).(omitted)

  • PDF

Comparison and Analysis between Human Breast Cancer Cells and Hepatoma Cells for the Effects of Xenobiotic Nuclear Receptors (Constitutive Androstane Receptor, Steroid and Xenobiotic Receptor, and Peroxisome-Proliferator-Activated Receptor γ ) on the Transcriptional Activity of Estrogen Receptor (유방암 세포와 간암세포에 있어서 에스트로겐 수용체의 전사조절기능에 대한 Xenobiotic 핵 수용체 (Constitutive Androstane Receptor, Steroid and Xenobiotic Receptor, Peroxisome-Proliferator-Activated Receptor γ )의 영향 비교분석)

  • 민계식
    • Journal of Life Science
    • /
    • v.13 no.3
    • /
    • pp.314-323
    • /
    • 2003
  • The purpose of this study was to examine the effects of xenobiotic nuclear receptors, CAR, SXR, and PPAR${\gamma}$ on the transcriptional activity of estrogen receptor in human breast cancer cell lines and compare with those in human hepatoma cell line. Two different breast cancer cell lines, MCF-7 and MDA-MB-231 were cultured and effects of CAR, SXR, and PPAR${\gamma}$ on the ER-mediated transcriptional activation of synthetic (4ERE)-tk-luciferase reporter gene were analyzed. Consistent with the previous report, CAR significantly inhibited ER-mediated transactivation and SXR repressed modestly whereas the PPAR${\gamma}$ did not repress the ER-mediated transactivation. However, in breast cancer cells neither of the xenobiotic receptors repressed the ER-mediated transactivation. Instead, they tend to increase the transactivation depending on the cell type and xenobiotic nuclear receptors. In MCF-7, SXR but neither CAR nor PPAR${\gamma}$ slightly increased ER-mediated transactivation whereas in MDA-MB-231, CAR and PPAR${\gamma}$ but not SXR tend to increase the transactivation of the reporter gene. These results indicate that the effects of ER cross-talk by the CAR, SXR, and PPAR${\gamma}$ , are different in breast cancer cells from hepatoma cells. In conclusion, the transcriptional regulation by estrogen can involve different cross-talk interaction between estrogen receptor and xenobiotic nuclear receptors depending on the estrogen target cells.

$Ginsenoside-R_{b1}$ Acts as a Weak Phytoestrogen in MCF-7 Human Breast Cancer Cells

  • Lee, Young-Joo;Jin, Young-Ran;Lim, Won-Chung;Park, Wan-Kyu;Cho, Jung-Yoon;Jang, Si-Youl;Lee, Seung-Ki
    • Archives of Pharmacal Research
    • /
    • v.26 no.1
    • /
    • pp.58-63
    • /
    • 2003
  • Ginseng has been recommended to alleviate the menopausal symptoms, which indicates that components of ginseng very likely contain estrogenic activity. We have examined the possibility that a component of Panax ginseng, $ginsenoside-R_{b1}$ acts by binding to estrogen receptor. We have investigated the estrogenic activity of $ginsenoside-R_{b1}$ in a transient transfection system using estrogen-responsive luciferase plasmids in MCF-7 cells. $ginsenoside-R_{b1}$ activated the transcription of the estrogen-responsive luciferase reporter gene in MCF-7 breast cancer cells at a concentration of 50 $\mu$M. Activation was inhibited by the specific estrogen receptor antagonist ICI 182,780, indicating that the estrogenic effect of $ginsenoside-R_{b1}$ is estrogen receptor dependent. Next, we evaluated the ability of $ginsenoside-R_{b1}$ to induce the estrogen-responsive gene c-fos by semi-quantitative RT-PCR assays and Western analyses. $ginsenoside-R_{b1}$ increased c-fos both at mRNA and protein levels. However, $ginsenoside-R_{b1}$ failed to activate the glucocorticoid receptor, the retinoic acid receptor, or the androgen receptor in CV-1 cells transiently transfected with the corresponding steroid hormone receptors and hormone responsive reporter plasmids. These data support our hypothesis that $ginsenoside-R_{b1}$ acts a weak phytoestrogen, presumably by binding and activating the estrogen receptor.