• 제목/요약/키워드: Human dental pulp stromal cells

검색결과 3건 처리시간 0.018초

Mineral trioxide aggregate가 유치 및 영구치의 치수기질세포 증식 및 분화에 미치는 영향 (Effects of Mineral Trioxide Aggregate on the Proliferation and Differentiation of Human Dental Pulp Stromal Cells from Permanent and Deciduous Teeth)

  • 김승혜;전미정;신동민;이제호;송제선
    • 대한소아치과학회지
    • /
    • 제40권3호
    • /
    • pp.185-193
    • /
    • 2013
  • 최근 유구치의 치수절단술 약제로 MTA의 임상 적용이 문헌들에서 보고된 바 있으나 MTA 표면에서 일어나는 유치 치수 세포의 반응에 대한 시험관내 연구는 많이 보고되지 않았다. 이번 연구의 목적은 유치 및 영구치에서 유래한 치수기질세포가 경화된 MTA 표면에서 나타내는 증식 및 분화 능력을 비교 평가하는 것이었다. 사람 영구치와 유치 치수 조직에서 분리된 치수기질세포를 경화된 MTA 표면에서 배양 후 세포증식율과 세포주기를 검사하였으며, 정량적 역전사 중합효소 연쇄반응(RT-PCR)을 사용하여 분화양상을 분석하였다. Runt-related transcription factor 2(Runx2)와 alkaline phosphatase(ALP)가 정량적 RT-PCR의 표지자로 사용되었고, MTA 표면에서 증식된 치수기질세포의 형태학적 변화를 주사전자현미경 하에서 관찰하였다. 영구치와 유치의 치수기질세포군은 세포증식률, 세포주기 분포 및 mRNA 발현 양상에 있어서 차이를 보이지 않았으며, 주사전자현미경 상에서 두 군 모두 수지상 형태를 나타내었다. MTA 상에서 관찰된 유치와 영구치의 치수기질세포의 비슷한 증식력 및 광화를 유도하는 세포로의 분화능은 유치의 치수절단술 제재로 MTA가 생체친화적으로 적합함을 보여준다.

Cryopreservation of mesenchymal stem cells derived from dental pulp: a systematic review

  • Sabrina Moreira Paes;Yasmine Mendes Pupo;Bruno Cavalini Cavenago;Thiago Fonseca-Silva;Carolina Carvalho de Oliveira Santos
    • Restorative Dentistry and Endodontics
    • /
    • 제46권2호
    • /
    • pp.26.1-26.15
    • /
    • 2021
  • Objectives: The aim of the present systematic review was to investigate the cryopreservation process of dental pulp mesenchymal stromal cells and whether cryopreservation is effective in promoting cell viability and recovery. Materials and Methods: This systematic review was developed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement and the research question was determined using the population, exposure, comparison, and outcomes strategy. Electronic searches were conducted in the PubMed, Cochrane Library, Science Direct, LILACS, and SciELO databases and in the gray literature (dissertations and thesis databases and Google Scholar) for relevant articles published up to March 2019. Clinical trial studies performed with dental pulp of human permanent or primary teeth, containing concrete information regarding the cryopreservation stages, and with cryopreservation performed for a period of at least 1 week were included in this study. Results: The search strategy resulted in the retrieval of 185 publications. After the application of the eligibility criteria, 21 articles were selected for a qualitative analysis. Conclusions: The cryopreservation process must be carried out in 6 stages: tooth disinfection, pulp extraction, cell isolation, cell proliferation, cryopreservation, and thawing. In addition, it can be inferred that the use of dimethyl sulfoxide, programmable freezing, and storage in liquid nitrogen are associated with a high rate of cell viability after thawing and a high rate of cell proliferation in both primary and permanent teeth.

Modulation of osteoblastic/odontoblastic differentiation of adult mesenchymal stem cells through gene introduction: a brief review

  • Kim, Ji-Youn;Kim, Myung-Rae;Kim, Sun-Jong
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제39권2호
    • /
    • pp.55-62
    • /
    • 2013
  • Bone tissue engineering is one of the important therapeutic approaches to the regeneration of bones in the entire field of regeneration medicine. Mesenchymal stem cells (MSCs) are actively discussed as material for bone tissue engineering due to their ability to differentiate into autologous bone. MSCs are able to differentiate into different lineages: osteo/odontogenic, adipogenic, and neurogenic. The tissue of origin for MSCs defines them as bone marrow-derived stem cells, adipose tissue-derived stem cells, and, among many others, dental stem cells. According to the tissue of origin, DSCs are further stratified into dental pulp stem cells, periodontal ligament stem cells, stem cells from apical papilla, stem cells from human exfoliated deciduous teeth, dental follicle precursor cells, and dental papilla cells. There are numerous in vitro/in vivo reports suggesting successful mineralization potential or osteo/odontogenic ability of MSCs. Still, there is further need for the optimization of MSCs-based tissue engineering methods, and the introduction of genes related to osteo/odontogenic differentiation into MSCs might aid in the process. In this review, articles that reported enhanced osteo/odontogenic differentiation with gene introduction into MSCs will be discussed to provide a background for successful bone tissue engineering using MSCs with artificially introduced genes.