• Title/Summary/Keyword: Human cytokines

Search Result 652, Processing Time 0.026 seconds

Gene Expression Profiles and Antioxidant Effects of Houttuynia cordata Thunb Extract in Human Keratinocyte HaCaT Cells (인간 피부각질세포 HaCaT에서 어성초 추출물의 유전체 발현 분석 및 항산화 효과)

  • Kim, Jung Min;Bang, In Seok
    • Journal of Life Science
    • /
    • v.28 no.12
    • /
    • pp.1406-1415
    • /
    • 2018
  • Based on the antioxidative effects in organic solvent fractions obtained from the main methanolic extract of Houttuynia cordata Thunb, the cytoprotective effects by oxidative-stress were here analyzed. Regarding the antioxidant activity of organic solvent fractions, the electron-donating ability of DPPH increased in a dose-dependent manner, and $ED_{50}$ exhibited the highest concentration at $175{\mu}g/ml$ in the Hc-EtOAc fraction. The cell viability of Hc-EtOAc fractions on $H_2O_2$-induced HaCaT cell death ($IC_{50}$) increased in a concentration-dependent manner and a visible cell survival rate of 74% was observed at a concentration of $100{\mu}g/ml$. Meanwhile, the gene expression patterns in HaCaT cells treated with $100{\mu}g/ml$ of the Hc-EtOAc fraction for 6 and 24 hr were identified with microarray analysis. The genes involved in signal transduction, cell division, antioxidant activity, and epithelial cell proliferation were found to be 2-fold up-regulated genes in HaCaT cells following the Hc-EtOAc fraction treatment. Especially, proinflammatory cytokines (IL1B, TNF, and IL6) were identified as involved in antioxidant activity based on the expression patterns of the HaCaT cells, and pathway analysis indicated that TLR4 might be considered an upstream regulator of these genes. In order to verify the activity of IL1B, TNF, and IL6, qRT-PCR showed that the expression increased more than 2 times in HaCaT cells treated with at least $100{\mu}g/ml$ of the Hc-EtOAc fraction. The activity of the upstream regulator TLR4 protein was also increased by the Hc-EtOAc fraction. As a result, the antioxidative activity of the Hc-EtOAc fraction is predicted to pass from TLR4 through cytokines such as IL1B, TNF, and IL6.

In Vitro Bioassay for Transforming Growth Factor-$\beta$ Using XTT Method

  • Kim, Mi-Sung;Ahn, Seong-Min;Moon, Aree
    • Archives of Pharmacal Research
    • /
    • v.25 no.6
    • /
    • pp.903-909
    • /
    • 2002
  • Research in the cytokine field has grown exponentially in recent years, and the validity of such studies relies heavily on the appropriate measurement of levels of cytokines in various biological samples. Transforming growth factor (TGF)-$\beta$, a hormonally active polypeptide found in normal and transformed tissue, is a potent regulator of cell growth and differentiation. The most widely used bioassay for TGF-$\beta$ is the inhibition of the proliferation of mink lung epithelial cells. Though detection of [$^3$H]thymidine incorporation is more sensitive than the MTT assay, it presents some disadvantages due to the safety and disposal problems associated with radioisotopes. In this study, we attempted to ascertain the experimental conditions which could be used for measuring the in vitro biological activity of TGF-$\beta$ in a safer and more sensitive way compared with the currently available methods. We compared the commonly used method, the MTT assay, to the XTT assay using different parameters including cell number, incubation time and the wave length used for detecting the product. We examined the anti-proliferative activities of TGF-$\beta$ in three different cell lines: Mv-1-Lu mink lung epithelial cells, MCF10A human breast epithelial cells and H-ras-transformed MCF10A cells. Herein, we present an experimental protocol which provides the most sensitive method of quantifying the biological activity of TGF-$\beta$, with a detection limit of as low as 10 pg/ml: Mv-1-Lu or H-ras MCF10A cells ($1{\times}10^5/well$) were incubated with TGF-$\beta$ at $37^{\circ}C$ in a humidified $CO_2$ incubator for 24 hr followed by XTT treatment and determination of absorbance at 450 or 490 nm. Our results may contribute to the establishment of an in vitro bioassay system, which could be used for the satisfactory quantitation of TGF-$\beta$.

Use of Prebiotics, Probiotics and Synbiotics in Clinical Immunonutrition

  • Bengmark, Stig
    • Preventive Nutrition and Food Science
    • /
    • v.7 no.3
    • /
    • pp.332-345
    • /
    • 2002
  • It is a recent observation that about 80 per cent of the body's immune system is localized in the gastrointestinal tract. This explains to a large extent why eating right is important for the modulation the immune response and prevention of disease. In addition it is increasingly recognized that the body has an important digestive system also in the lower gastrointestinal tract where numerous important substances are released by microbial enzymes and absorbed. Among these substances are short chain fatty acids, amino acids, various carbohydrates, poly-amines, growth factors, coagulation factors, and many thousands of antioxidants, not only traditional vitamins but numerous flavonoids, carotenoids and similar plant- and vegetable produced antioxidants. Also consumption of health-promoting bacteria (probiotics) and vegetable fibres (prebiotics) from numerous sources are known to have strong health-promoting influence. It has been calculated that the intestine harbours about 300,000 genes, which is much more than the calculated about 60,000 for the rest of the human body, indicating a till today totally unexpected metabolic activity in this part of the GI tract. There are seemingly several times more active enzymes in the intestine than in the rest of the body, ready to release hundred thousand or more of substances important for our health and well-being. In addition do the microbial cells produce signal molecules similar to cytokines but called bacteriokines and nitric oxide, with provide modulatory effects both on the mucosal cells, the mucosa- associated lymphoid system (MALT) and the rest of the immune system. Identification of various fermentation products, and often referred to as synbiotics, studies of their role in maintaining health and well-being should be a priority issue during the years to come.

Inhibitory Effect of Gamihwalhyeol-tang on Inflammatory Cytokine and NF-kB, AP-1 Activation in Human Synovial Cells (가미활혈탕이 Rheumatoid arthritis 관련 싸이토카인 및 전사인자에 미치는 영향)

  • Shin Sang Moon;Park Jong Ho;Yoo Dong Youl;Kim Dong Hee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.1
    • /
    • pp.165-176
    • /
    • 2003
  • The present study was carried out to examine the effects of Kami-hwal-hyeol-tang(KHHT) on the immune responses of synoviocyte cells prepared from the rheumatoid arthritis patients, and also on the collagen-mediated arthritis in mouse model. Several experiments were performed in vitro and in vivo to analyse the immunomodulatory effects of KHHT, and the major findings are summarized below: 1. KHHT did not show the cytotoxicity against mLFCs and hFLSs. 2. KHHT inhibited gene expression of IL-1β, IL-6, TNF-α, COX-2, NOS and GM-CSF in hFLSs. Furthermore, KHHT-treated hFLSs showed reduced production of pro-inflammatory cytokines such as IL-1β and IL-6 compared to the control cells. 3. KHHT treatment of hFLSs inhibited the binding activity of NF-kB and AP-1 to their consensus DNA sequences. 4. KHHT treatment(400 ㎍/㎖) of hFLSs significantly inhibited hFLSs proliferations compared to the control cells. 5. KHHT significantly reduced the production of ROS in hFLSs compared to the control cells. The present data show that KHHT plays an important role for the regulation of AP-1 and NF-kB gene expression. Also, it was found that KHHT has anti-arthritis effect. Further studies of KHHT in relation to RA therapeutics may provide important information to develop drugs to treat this disease.

Interleukin-6-174 Promoter Polymorphism and Susceptibility to Hepatitis B Virus Infection as a Risk Factor for Hepatocellular Carcinoma in Iran

  • Attar, Marzieh;Azar, Saleh Shahbazi;Shahbazi, Majid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.5
    • /
    • pp.2395-2399
    • /
    • 2016
  • Background: Hepatitis B virus (HBV) is a major risk factor for hepatocellular carcinoma (HCC). Cytokines play an important role in the regulation of immune responses and defense against viral infections. Human interleukin 6 (IL6) is a multifunctional cytokine that participates in these processes. Objective: The aim of this study was to assess the IL6-174 gene polymorphism in patients with chronic hepatitis B virus (HBV) infection as compared with healthy controls in an Iranian population. Materials and Methods: Totals of 297 HBV patients and 368 control individuals were evaluated. Genomic DNA was extracted from peripheral blood and the SSP-PCR (sequence specific primer-polymerase chain reaction) method was applied for genotyping. Results: The frequencies of genotypes C/C, G/G and C/G in HBV cases were 4.7%, 34.3%, 60.9% and in controls were 12.8%, 39.7% and 47.6%, respectively. The frequencies of G and C allele in patients and controls were 78.1%, 21.9% and 67.4%, 32.6 % respectively. There was a significant difference in the frequencies of G/G genotype (CI=1.8-7.1, OR=3.47, P=0.00001) and G allele (CI=1.34-2.23, OR=1.72, P=0.0001) between HBV patients and the control group. Conclusions: These findings suggest that the IL6-174 C/G genotype and the G allele are strongly associated with susceptibility to HBV infection. Demographic information showed that most of the subjects were male (74.4%). According to high frequency of G/G genotype in male participants (63.1%) men probably are more susceptible to hepatitis than women.

Co-immunomodulatory Activities of Anionic Macromolecules Extracted from Codium fragile with Red Ginseng Extract on Peritoneal Macrophage of Immune-Suppressed Mice

  • Kim, Ji Eun;Monmai, Chaiwat;Rod-in, Weerawan;Jang, A-yeong;You, Sang-Guan;Lee, Sang-min;Jung, Seok-Kyu;Park, Woo Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.352-358
    • /
    • 2020
  • In this study we investigated the immune effects of oral administration of anionic macromolecules extracted from Codium fragile (CFAM) and red ginseng extract mixture on the peritoneal macrophage cells in immune-suppressed mice. Cyclophosphamide (CY) induces the immune-suppressed condition. CY-treated mice were orally fed with different concentrations of CFAM supplemented with red ginseng extract and the peritoneal macrophages collected. CY treatment significantly decreased the immune activities of peritoneal macrophages, compared to the normal mice. The administration of CFAM mixed with red ginseng extract significantly boosted the viability of macrophage cells and nitric oxide production of peritoneal macrophages. Further, the oral administration of CFAM mixed with red ginseng extract up-regulated the expression of iNOS, COX-2, and TLR-4 as well as cytokines such as IL-1β, IL-6, TNF-α, and IFN-γ more than the red ginseng-treated group. This study showed that CFAM enhanced the immune activity of red ginseng extract in the peritoneal macrophage cells of immune-suppressed mice. Furthermore, CFAM might be used as a co-stimulant of red ginseng extract through the regulation of macrophage cells for the enhancement of human health and immunity.

Anti-Allergic Effect of Ponciri fructus

  • Hong Seung-Heon;Kim Hyung-Min
    • Proceedings of the Korean Society of Food Science and Nutrition Conference
    • /
    • 2004.11a
    • /
    • pp.110-115
    • /
    • 2004
  • The immature fruits of Poncirus trifoliata L. or Ponciri fructus (PF), well known as 'Jisil' in Korea, have been used against allergic diseases for generations, and still occupy an important place in traditional Oriental medicine. Anti-allergic effects of this fruit have been investigated in a few experimental models. Immunoglobulin E (IgE) is the principal immunoglobulin involved in immediate hypersensitivities and chronic allergic diseases. The effect of an aqueous extract of PF on in vivo and in vitro IgE production was investigated. PF dose-dependently inhibited the active systemic anaphylaxis and serum IgE production induced by immunization with ovalbumin, Bordetelia pertussis toxin and aluminum hydroxide gel. PF strongly inhibited interleukin 4 (IL-4)-dependent IgE production by lipopolysaccharide-stimulated murine whole spleen cells. In the case of U266 human IgE-bearing B cells, Ponciri fructus also showed an inhibitory effect on the IgE production. On the other hand, mast cell hyperplasia can be causally related with chronic inflammation. Stem cell factor (SCF), the ligand of the c-kit protooncogene product, is a major regulator and ohernoattractant of mast cells. Ponciri fiuctus (1 mg/mL) significantly inhibited the SCF-induced migration of rat peritoneal mast cells (RPMCs). RPMCs exposed to SCF (50 ng/mL) resulted in a drastic shape change with a polarized morphology while the cells exposed to Ponciri fructus (1 mg/mL) remained resting, with little or no shape alteration. The drastic morphological alteration and distribution of polymerized actin were blocked by pretreatment with Ponciri fructus. In addition, Ponciri fructus inhibited both TNF-alpha and IL-6 secretion from RPMCs stimulated with SCF. These results suggest that Ponciri fructus has an anti-allergic activity by inhibition of IgE production from B cells. These findings also provide evidence that Ponciri fructu inhibits chemotactic response and inflammatory cytokines secretion to SCF in mast cells.

  • PDF

Socioeconomic impact of traditional Korean medicine, Pyeongwee-San (KMP6) as an anti-allergic inflammatory drug

  • Song, Young-Hoon;Nam, Sun-Young;Choi, Young-Jin;Kim, Jeong-Hwa;Kim, Young-Sick;Jeong, Hyun-Ja
    • CELLMED
    • /
    • v.2 no.3
    • /
    • pp.29.1-29.9
    • /
    • 2012
  • The prevalence of allergic disease has been increasing over the past few decades in the majority of Western industrialized nations. There are some socioeconomic disparities regarding allergic disease status and management. Pyeongwee-San (KMP6) is Korean medicine for the treatment of gastrointestinal tract disease. It is known that KMP6 has an improving effect on the spleen and stomach functions in traditional Korean medical theory. Here, we hypothesized that KMP6 could be used to regulate the inflammatory reaction. We show the molecular mechanisms of Pyeongwee-San (KMP6) on inflammatory reactions. A molecular docking simulation showed that hesperidin, component of KMP6, regulate the enzymatic activity by interaction in the active site of caspase-1. KMP6 control the activity of caspase-1 in activated human mast cell line (HMC-1 cells). KMP6 reduced the expression of receptor interacting protein (RIP)-2 in HMC-1 cells. Thymic stromal lymphopoietin protein production and mRNA expression were inhibited by KMP6. In the activated HMC-1 cells, KMP6 suppressed the activation of mitogen-ativated protein kinase and nuclear factor-kappaB. In addition, KMP6 significantly inhibited the expression of inflammatory cytokines. Our findings indicate that KMP6 may attenuate allergic reactions via the regulation of caspase-1/RIP-2 signaling pathway. These studies will help advance the social welfare system.

Inhibitory Effect of Scolopendra Morsitans L. Ether Extract on Lipopolysaccharide-Induced Inflammatory Response in RAW 264.7 Cells (오공(蜈蚣) 에테르 추출물의 RAW 264.7 cell에서 LPS로 유도된 염증반응 억제 효과)

  • Jung, Ho Kyung;Cho, Hyun Woo;Jung, Won Seok;Choi, In Young;Cho, Jung Hee;Jung, Su Young
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.1
    • /
    • pp.78-82
    • /
    • 2013
  • It has been reported that Scolopendra morsitans L.(SML) has beneficial effects on human health and diverse diseases. The purpose of this study was to investigate the anti-inflammatory effects of ether extract from Scolopendra morsitans L. on lipopolysaccharide(LPS)-induced inflammatory response. Thus, we examined the inhibitory effect of SML ether fraction on LPS-induced increase of inflammatory mediators(NO, iNOS, COX-2, and $I{\kappa}B{\alpha}$) and pro-inflammatory cytokines(TNF-${\alpha}$) in RAW 264.7 cells. In the present study, SML ether extract itself decreased cell viability in a dose dependent manner(> 100 ${\mu}g/ml$). In addition, LPS increased NO production, iNOS expression and phosphorylation of $I{\kappa}-B{\alpha}$, which were blocked by the treatment of SML ether fraction in a dose dependent manner. Furthermore, the treatment of LPS increased TNF-${\alpha}$ production. However, the pretreatment of SML ether fraction prevented the LPS-induced TNF-${\alpha}$ production in dose dependant manner. Taken together, our results suggest that SML may be a beneficial drug against inflammatory diseases such as sepsis.

LJ-2698, an Adenosine A3 Receptor Antagonist, Alleviates Elastase-Induced Pulmonary Emphysema in Mice

  • Boo, Hye-Jin;Park, So Jung;Noh, Myungkyung;Min, Hye-Young;Jeong, Lak Shin;Lee, Ho-Young
    • Biomolecules & Therapeutics
    • /
    • v.28 no.3
    • /
    • pp.250-258
    • /
    • 2020
  • Emphysema, a major component of chronic obstructive pulmonary disease (COPD), is a leading cause of human death worldwide. The progressive deterioration of lung function that occurs in the disease is caused by chronic inflammation of the airway and destruction of the lung parenchyma. Despite the main impact of inflammation on the pathogenesis of emphysema, current therapeutic regimens mainly offer symptomatic relief and preservation of lung function with little therapeutic impact. In the present study, we aimed to discover novel therapeutics that suppress the pathogenesis of emphysema. Here, we show that LJ-2698, a novel and highly selective antagonist of the adenosine A3 receptor, a G protein-coupled receptor involved in various inflammatory diseases, significantly reversed the elastase-induced destructive changes in murine lungs. We found that LJ-2698 significantly prevented elastase-induced airspace enlargement, resulting in restoration of pulmonary function without causing any obvious changes in body weight in mice. LJ-2698 was found to inhibit matrix metalloproteinase activity and pulmonary cell apoptosis in the murine lung. LJ-2698 treatment induced increases in anti-inflammatory cytokines in macrophages at doses that displayed no significant cytotoxicity in normal cell lines derived from various organs. Treatment with LJ-2698 significantly increased the number of anti-inflammatory M2 macrophages in the lungs. These results implicate the adenosine A3 receptor in the pathogenesis of emphysema. Our findings also demonstrate the potential of LJ-2698 as a novel therapeutic/preventive agent in suppressing disease development with limited toxicity.