• Title/Summary/Keyword: Human cytochrome p450 1A2

Search Result 114, Processing Time 0.027 seconds

Effects of Bisphenol and Octylphenol on TM3 Cell : Expression of Cytochrome P450scc and Estrogen Receptor $\alpha$ mRNA (Bisphenol과 Octylphenol이 TM3 세포에 미치는 영향: Cytochrome P450scc와 Estrogen Receptor $\alpha$ 유전자의 발현)

  • 이호준;김묘경;강희규;김동훈;한성원;고덕성
    • Development and Reproduction
    • /
    • v.4 no.2
    • /
    • pp.215-220
    • /
    • 2000
  • Most of endocrine disrupters (EDs) have been reported to exhibit estrogenic or anti-androgenic activity and thereby may disrupt reproductive development in human or wildlife. This study was performed to investigate the effects of estrogen (E$_2$), bisphenol (BP) and octylphenol (OP) on the mouse Leydig cell line (TM3). TM3 originated from testis of 11~13-daly-old BALB/c nu/+ mice was cultured in DMEM supplemented with 10% FBS alone or medium with estrogen (E$_2$), bisphenol (BP) and octylphenol (OP; 1 pM, 1 nM, 1 $\mu$M, 1 mM, respectively) for 48 hours. After culture, total cell number and viability were assessed by heamocyto-meter and trypan blue stain. Expression of cytochrome P450scc (CYPscc) mRNA whose product is involved in steroid hormone biosynthesis and estrogen receptor $\alpha$(ER $\alpha$) mRNA were detected by RT-PCR. As a result, treatment of TM3 with E$_2$, BP and OP(1 mM, respectively) significantly decreased the viability but not all of groups as high as 1 $\mu$M. Exposure of TM3 to OP significantly reduced the total cell number but not E$_2$ or BP. The expression of CYPscc mRNA was slightly reduced in BP (1 nM, 1 $\mu$M) and significantly decreased in OP (1 nM, 1 $\mu$M) treated TM3, except E$_2$ group. But the expression of ER $\alpha$ mRNA was sightly increased in all treated groups. In conclusion, BP and OP (high concentration) might inhibit steroidogenesis by decreasing the CYPscc mRNA expression in the mouse testis. These results suggest that BP and OP might impair spermatogenesis and subsequently disturb testicular function.

  • PDF

Transfected HepG2 Cells for Evaluation of Catechin Effects on Alcohol-Induced CYP2E1 Cytotoxicity

  • LEE YOO-HYUN;HO JIN-NYOUNG;DONG MI-SOOK;PARK CHANG-HWAN;KIM HYE-KYUNG;HONG BUMSHIK;SHIN DONG-HOON;CHO HONG-YON
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1310-1316
    • /
    • 2005
  • To evaluate the toxicological properties of human cytochrome P450 2E1 (CYP2E1) induced by ethanol and possible protective effects of various green tea catechins on alcohol-induced toxicity, transfected HepG2 cells that stably and constitutively express human CYP2E1 were established using the recombinant retroviral expression vector. Exposure of the CYP2E1-expressing HepG2 cells to high concentration of ethanol (200 mM) for 5 days resulted in a more than $50\%$ increase of cytotoxicity, assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction, lactate dehydrogenase (LDH) release, and reactive oxygen species (ROS) production, and loss of normal morphology, in comparison with HepG2 cells containing control vector. Treatment of the cells with various catechins increased cell viability by more than 2-fold. (-)-Epicatechin gallate and(-)-catechin gallate at the lowest concentration ($5\;{\mu}M$) attenuated cell death induced CYP2E1 by $60-65\%$. Therefore, the results showed that the catechins, including epimerized catechins, have strong protective effects against alcohol-induced CYP2E1 toxicity, and it is correlated with antioxidant effect.

Bosentan and Rifampin Interactions Modulate Influx Transporter and Cytochrome P450 Expression and Activities in Primary Human Hepatocytes

  • Han, Kyoung-Moon;Ahn, Sun-Young;Seo, Hyewon;Yun, Jaesuk;Cha, Hye Jin;Shin, Ji-Soon;Kim, Young-Hoon;Kim, Hyungsoo;Park, Hye-kyung;Lee, Yong-Moon
    • Biomolecules & Therapeutics
    • /
    • v.25 no.3
    • /
    • pp.288-295
    • /
    • 2017
  • The incidence of polypharmacy-which can result in drug-drug interactions-has increased in recent years. Drug-metabolizing enzymes and drug transporters are important polypharmacy modulators. In this study, the effects of bosentan and rifampin on the expression and activities of organic anion-transporting peptide (OATP) and cytochrome P450 (CYP450) 2C9 and CYP3A4 were investigated in vitro. HEK293 cells and primary human hepatocytes overexpressing the target genes were treated with bosentan and various concentrations of rifampin, which decreased the uptake activities of OATP transporters in a dose-dependent manner. In primary human hepatocytes, CYP2C9 and CYP3A4 gene expression and activities decreased upon treatment with $20{\mu}M$ $bosentan+200{\mu}M$ rifampin. Rifampin also reduced gene expression of OATP1B1, OATP1B3, and OATP2B1 transporter, and inhibited bosentan influx in human hepatocytes at increasing concentrations. These results confirm rifampin- and bosentan-induced interactions between OATP transporters and CYP450.

GENETIC SUSCEPTIBILITIES OF CYTOCHROME P450 1A1, 2E1, AND N-ACETYLTRANSFERASE 2 TO THE RISKS FOR KOREAN HEAD AND NECK CANCER PATIENTS (한국인 두경부암종 환자에서 Cytochrome P450 1A1, 2E1 및 N-acetyltransferase 2 효소의 다형성 분석에 따른 유전적 감수성에 대한 연구)

  • Lee, Young-Soo;Kim, Te-Gyun;Woo, Soon-Seop;Shim, Kwang-Sub;Kong, Gu
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.22 no.4
    • /
    • pp.373-382
    • /
    • 2000
  • Individual genetic susceptibilities to cancers may result from several factors including differences in xenobiotics metabolism to chemical carcinogens, DNA repair, altered oncogenes and suppressor genes, and environmental carcinogen exposures. Among them, genetic polymorphisms of metabolizing enzymes to chemical carcinogens have been recognized as a major important host factors in human cancers. They have two main types of enzymes: the phase I cytochrome P-450 mediating enzymes (CYPs) and phase II conjugating enzymes. The purpose of this study is to determine the frequencies of genotypes of phase I (CYP1A1 and CYP2E1) and phase II (NAT2) metabolizing enzymes in healthy control and head and neck cancer patients of Korean and to identify the relative high risk genotypes of these metabolizing enzymes to head and neck cancer in Korean. The author has analyzed 132 head and neck cancer patients and 113 healthy controls using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The results were as following; 1. The frequencies of genotypes of CYP1A1, CYP2E1 and NAT2 in healthy control were as following; CYP1A1 exon 7 polymorphism; Ile/Ile: Ile/Val: Val/Val = 59.3%: 36.3%: 4.4% CYP2E1 Pst I polymorphism, C1/C1: C1/C2: C2/C2 = 61.1%: 32.1%: 6.2% NAT2 polymorphism; F/F: F/S: S/S = 43.4%: 48.7%: 8.0% 2. In analysis of phase I enzyme, Val/Val genotype in CYP1A1 exon 7 polymorphism and C2/C2 genotype in CYP2E1 Pst I polymorphism were associated with relative high risks to head and neck cancers (Odds' ratio: 2.09 and 1.37, respectively). 3. Among the genotypes of NAT2 enzyme polymorphism, S/S genotype of NAT2 enzyme had 1.03 times of relative risk to head and neck cancers. 4. In combined genotyping of CYP1A1, CYP2E1, and NAT2 enzymes polymorphisms, the patients with Val/Val and C1/C1, C2/C2 and fast acetylator, and Val/Val and fast acetylator had higher relative risks than the patients with each baseline of combined genotypes (Odds' ratio: 2.82, 1.98 and 2.1, respectively). These results suggest the combined genotypes of Val/Val and C1/C1, C2/C2 and fast acetylator, and Val/Val and fast acetylator were more susceptible to head and neck cancers in Korean. And genotyping of metabolizing enzymes could be useful for predicting individual susceptibility to head and neck cancer.

  • PDF

Mechanism of Apoptotic Cell Death by 2,4,3',5'-Tetramethoxystilbene in Human Promyelocytic Leukemic HL-60 Cells

  • Lee, Sang-Kwang;Chae, Ah-Reum;Chun, Young-Jin
    • Biomolecules & Therapeutics
    • /
    • v.15 no.3
    • /
    • pp.145-149
    • /
    • 2007
  • We have previously shown that 2,4,3',5'-tetramethoxystilbene (TMS), a synthetic trans-stilbene analogue acting as a potent inhibitor of human cytochrome P450 1B1, induces apoptotic cell death in human cancer cells. In the present studies, we report the mechanisms of apoptotic cell death by TMS in human promyelocytic leukemic HL-60 cells. We found that treatment of HL-60 cells with TMS suppressed the cell growth in a concentration-dependent manner with $IC_{50}$ value of about 0.8 ${\mu}M$. Immunoblot experiments revealed that DMHS-induced apoptosis was associated with cleavage of poly (ADP-ribose) polymerase. The release of cytochrome c from mitochondria into the cytosol was significantly increased in response to TMS. TMS caused activation of caspase-3 in a concentration-dependent manner and TMS-mediated caspase-3 activation was partially prevented by the caspase inhibitor, zVAD-fmk. Interestingly, we found that the cytotoxic effect of anticancer drugs such as paclitaxel, docetaxel, or etoposide was enhanced in the presence of TMS. Simultaneous treatment with TCDD also significantly increased cytotoxic effects of TMS alone or TMS and anti-cancer agents. Taken together, our present results indicated that TMS leads to apoptotic cell death in HL-60 cells through activation of caspase-3 activity and release of cytochrome c into cytosol. The ability of TMS to increase cytotoxic effect of anticancer drugs may contribute to its usefulness for cancer chemotherapy.

A Study on the Effects of Sungshimsan on the Heart Lipid Peroxide and Metabolic Enzyme System in Senescence Induced Rats (노화과정(老化過程)의 흰쥐에서 성심산(醒心散)이 심장(心臟)의 대사효소계(代謝酵素系)에 미치는 영향(影響))

  • Kwak, Jung-mun;Oh, Min-Suck;Song, Tae-won
    • Journal of Haehwa Medicine
    • /
    • v.8 no.1
    • /
    • pp.625-641
    • /
    • 1999
  • Aging occurs as a part of maturation as the time progresses which manifests in the human body causing morphological and functional degeneration, eventually leading to death. This experimental study was conducted to investigate a herbal formula to fortify the heart with easy clinical applications. Sungshimsan was chosen to study its effects in heart lipid peroxide and metabolic enzyme system in senescence induced rats. After pre-treatment of Sungshimsan for 2 weeks at the dosage of A (100mg/kg), B (250mg/kg), C (350mg/kg), and D (500mg/kg), a lipid peroxide and metabolic enzyme system changes of the heart were meaured in 32 weeks old rats. The following results were obtained in this study: 1. The contents of lipid peroxide was significantly reduced in the experimental groups treated with greater than 2 weeks at 250mg/kg. 2. The enzymatic activity of cytochrome P-450, cytochrome b5, and NADPH-cytochrome P450 reductase were significantly decreased in the 250mg/kg, 350mg/kg, and 500mg/kg experimental groups. 3. The activity of glutathione and glutathione S-transferase were significantly increased in the 250mg/kg, 350mg/kg, and 500mg/kg experimental groups. 4. The activity of glutathione reductase and glutathione peroxidase were not influenced compared to the control group. 5. The activity of ${\gamma}$-glutamylcystein synthetase was significantly increased in the 250mg/kg, 350mg/kg, and 500mg/kg experimental groups. 6. The activity of enzymes detoxificatioon superoxide dismutase and catalase were not influenced compared to the control group. Summarizing above results suggest that the Sungshimsan has profound effects in the heart lipid peroxide, free radicals, and delaying the heart aging process. Further clinical researches and application can be anticipated on the topic of senility and gerontology.

  • PDF

Dehydroepiandrosterone supplement increases malate dehydrogenase activity and decreases NADPH-dependent antioxidant enzyme activity in rat hepatocellular carcinogenesis

  • Kim, Jee-Won;Kim, Sook-Hee;Choi, Hay-Mie
    • Nutrition Research and Practice
    • /
    • v.2 no.2
    • /
    • pp.80-84
    • /
    • 2008
  • Beneficial effects of dehydroepiandrosterone (DHEA) supplement on age-associated chronic diseases such as cancer, cardiovascular disease, insulin resistance and diabetes, have been reported. However, its mechanism of action in hepatocellular carcinoma in vivo has not been investigated in detail. We have previously shown that during hepatocellular carcinogenesis, DHEA treatment decreases formation of preneoplastic glutathione S-transferase placental form-positive foci in the liver and has antioxidant effects. Here we aimed to determine the mechanism of actions of DHEA, in comparison to vitamin E, in a chemically-induced hepatocellular carcinoma model in rats. Sprague-Dawley rats were administered with control diet without a carcinogen, diets with 1.5% vitamin E, 0.5% DHEA and both of the compounds with a carcinogen for 6 weeks. The doses were previously reported to have anti-cancer effects in animals without known toxicities. With DHEA treatment, cytosolic malate dehydrogenase activities were significantly increased by ${\sim}5$ fold and glucose 6-phosphate dehydrogenase activities were decreased by ${\sim}25%$ compared to carcinogen treated group. Activities of Se-glutathione peroxidase in the cytotol was decreased siguificantly with DHEA treatment, confirming its antioxidative effect. However, liver microsomal cytochrome P-450 content and NADPH-dependent cytochrome P-450 reductase activities were not altered with DHEA treatment. Vitamin E treatment decreased cytosolic Se-glutathione peroxidase activities in accordance with our previous reports. However, vitamin E did not alter glucose 6-phosphate dehydrogenase or malate dehydrogenase activities. Our results suggest that DHEA may have decreased tumor nodule formation and reduced lipid peroxidation as previously reported, possibly by increasing the production of NADPH, a reducing equivalent for NADPH-dependent antioxidant enzymes. DHEA treatment tended to reduce glucose 6-phosphate dehydrogenase activities, which may have resulted in limited supply for de novo synthesis of DNA via inhibiting the hexose monophophaste pathway. Although both DHEA and vitamin E effectively reduced preneoplastic foci in this model, they seemed to fimction in different mechanisms. In conclusion, DHEA may be used to reduce hepatocellular carcinoma growth by targeting NADPH synthesis, cell proliferation and anti-oxidant enzyme activities during tumor growth.

Identification of Differentially Expressed Genes by TCDD in Human Bronchial Cells: Toxicogenomic Markers for Dioxin Exposure

  • Park, Chung-Mu;Jin, Kyong-Suk;Lee, Yong-Woo
    • Biomedical Science Letters
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • Differentially expressed genes by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) were identified in order to evaluate them as dioxin-sensitive markers and crucial signaling molecules to understand dioxin-induced toxic mechanisms in human bronchial cells. Gene expression profiling was analyzed by cDNA microarray and ten genes were selected for further study. They were cytochrome P450, family 1, subfamily B, polypeptide 1 (CYP1B1), S100 calcium binding protein A8 (calgranulin A), S100 calcium binding protein A9 (calgranulin B), aldehyde dehydrogenase 1 family, member A3 (ALDH6) and peroxiredoxin 5 (PRDX5) in up-regulated group. Among them, CYP1B1 was used as a hallmark for dioxin and sharply increased by TCDD exposure. Down-regulated genes were IK cytokine, interferon-induced protein with tetratricopeptide repeats 1 (IFIT1), nuclease sensitive element binding protein 1 (NSEP1), protein tyrosine phosphatase type VI A, member 1 (PTP4A1), ras oncogene family 32 (RAB32). Although up-regulated 4 genes in microarray were coincided with northern hybridization, down-regulated 5 genes showed U-shaped expression pattern which is sharply decreased at lower doses and gradually increased at higher doses. These results introduce some of TCDD-responsive genes can be sensitive markers against TCDD exposure and used as signaling cues to understand toxicity initiated by TCDD inhalation in pulmonary tissues.

In vitro metabolism of a new protective agent, KR-31543 in human liver microsomes

  • Ji, Hye-Young;Kim, Sook-Jin;Lee, Hong-Il;Lee, Seung-Seok;Lee, Dong-Ha;Lim, Hong;Lee, Hye-Suk
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.286.2-287
    • /
    • 2003
  • The purpose of this paper was to identify the metabolic pathway of a new neuroprotective agent, KR-31543 for ischemia-reperfusion damage in human liver microsomes and characterize cytochrome P450 (CYP) enzymes involved in the in vitro metabolism of KR-31543 generates two metabolites in human liver microsomes : M1, N-(4-chlorophenyl)-N-(2-methyl-2H-tetrazol-5-ylmethyl)amine and M2, hydroxy-KR-31543. (omitted)

  • PDF