• 제목/요약/키워드: Human computer interactions

검색결과 93건 처리시간 0.029초

The Effects of Online Brand Community Members' Interactions on Values, Participation, and Brand Loyalty: The Mediating Effects of Virtual Interactivity

  • Yongsoo, HA;Alona J., GUBALANE
    • 융합경영연구
    • /
    • 제11권1호
    • /
    • pp.1-12
    • /
    • 2023
  • Purpose: This study identified the effects of the three types of consumer interactions on the utilitarian and hedonic values experienced by community members, their degree of participation, and brand loyalty. In addition, the mediating effect of virtual interactivity between the interactions that occur within the online brand community and the value experienced by community members was also identified. Research design, data and methodology: An online survey was distributed, and the data gathered was analyzed using structural equations modeling. Results: Test results showed that product-information interaction has a positive effect on utilitarian value and interpersonal interaction has a positive effect on hedonic value. Human-computer interaction was found to have a negative effect on hedonic value and no significant effect on utilitarian value. Furthermore, it was revealed that among the three types of interactions, virtual interactivity had a mediating effect only in the relationship between human-computer interaction and hedonic value. Moreover, utilitarian values experienced by community members affected their level of participation which ultimately enhances brand loyalty. Hedonic value did not affect their level of participation within the online brand community. Conclusions: When marketers establish online brand community strategies, they must place elements that can directly help the use of brands and products.

Embedded 3D-Sensing Devices with Real-Time Depth-Imaging Technologies

  • Bhowmik, Achintya K.
    • 인포메이션 디스플레이
    • /
    • 제18권3호
    • /
    • pp.3-12
    • /
    • 2017
  • In the recent years, significant advances have been made in the development of small form-factor, low power, and low cost 3D-sensing devices based on depth-imaging technologies with real-time performance. This has led to the advent of devices and machines that are able to sense and understand the world, navigate in the environment, and interact naturally with their human users. Human-computer interactions based on touch sensing and speech recognition have already become mainstream, and the rapid developments in 3D sensing is paving the path towards the next level of machine intelligence and interactions. This paper discusses the recent developments in real-time 3D sensing technologies and their emerging system application.

Movie Experience Sharing on Social Networking Sites of Cinema: Interplay between Telepresence and Customer Delight

  • Zong-Yi Zhu;Hyeon-Cheol Kim
    • International journal of advanced smart convergence
    • /
    • 제12권4호
    • /
    • pp.224-236
    • /
    • 2023
  • This study aims to investigate the effects of telepresence on young moviegoers' flow experiences and social interactions, and the impact on consumer delight, trust, and experience sharing behavior on cinema mobile social network site pages. Given the scarcity of telepresence research, indirect telepresence on experience sharing via two experiences and social interactions is also included. The study used pages from Korean cinema mobile social network sites, and 175 Chinese moviegoers residing in Korea participated. We found that telepresence positively impacts the activity in both human-human and human-computer interactions. We further contend that telepresence positively affects perceived enjoyment and attentional focus. However, perceived enjoyment does not significantly affect consumer delight. We found that consumer delight positively influences consumer trust and movie experience sharing. Moreover, we illustrated that telepresence significantly and indirectly influences consumer movie experience-sharing behavior through attention focus and consumer delight. Our results provide crucial insights for future study and practical managerial.

Framework Design of Pervasive Computing System for Inter Space Interactions between Private and Public Smart Spaces

  • Lim, Shin-Young;Chung, Lawrence;Helal, Sumi;Yang, Hen-I
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제9권3호
    • /
    • pp.198-205
    • /
    • 2009
  • In this paper, design of framework architecture of pervasive computing system providing seamless inter space interactions between private and public smart spaces is presented. The seamless inter space interaction issues are related to establishing user's service environment by allocating relevant resources in a new location where there are no prior settings for the user or where there are current users already being served in the new location. In the realm of pervasive computing, we can have different types of smart spaces, offering proactive and intelligent services, which are islands of smart spaces independent from each other. As users move about, they will have to roam from private smart space to public smart space and vice versa. When they enter a new island of smart space, they will have to setup their devices and service manually to get the same or different services they had at the previous location. Users might be living in a non-pervasive computing environment because this manual operation is inappropriate to its generic features of proactive and intelligent services of pervasive computing. The framework architecture will provide seamless inter space interactions initiated by changes in users' location to acquire negotiations of resources for new and current residents regarding service provision with limited available networked devices.

Intelligent Emotional Interface for Personal Robot and Its Application to a Humanoid Robot, AMIET

  • Seo, Yong-Ho;Jeong, Il-Woong;Jung, Hye-Won;Yang, Hyun-S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1764-1768
    • /
    • 2004
  • In the near future, robots will be used for the personal use. To provide useful services to humans, it will be necessary for robots to understand human intentions. Consequently, the development of emotional interfaces for robots is an important expansion of human-robot interactions. We designed and developed an intelligent emotional interface for the robot, and applied the interfaces to our humanoid robot, AMIET. Subsequent human-robot interaction demonstrated that our intelligent emotional interface is very intuitive and friendly

  • PDF

Tangible Space Initiative

  • Ahn, Chong-Keun;Kim, Lae-Hyun;Ha, Sung-Do
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1053-1056
    • /
    • 2004
  • Research in Human Computer Interface (HCI) is towards development of an application environment able to deal with interactions of both human and computers that can be more intuitive and efficient. This can be achieved by bridging the gap between the synthetic virtual environment and the natural physical environment. Thus a project called Tangible Space Initiative (TSI) has been launched by KIST. TSI is subdivided into Tangible Interface (TI) which controls 3D cyber space with user's perspective, Responsive Cyber Space (RCS) which creates and controls the virtual environment and Tangible Agent (TA) which senses and acts upon the physical interface environment on behalf of any components of TSI or the user. This paper is a brief introduction to a new generation of Human Computer Interface that bring user to a new era of interaction with computers in the future.

  • PDF

Three-stream network with context convolution module for human-object interaction detection

  • Siadari, Thomhert S.;Han, Mikyong;Yoon, Hyunjin
    • ETRI Journal
    • /
    • 제42권2호
    • /
    • pp.230-238
    • /
    • 2020
  • Human-object interaction (HOI) detection is a popular computer vision task that detects interactions between humans and objects. This task can be useful in many applications that require a deeper understanding of semantic scenes. Current HOI detection networks typically consist of a feature extractor followed by detection layers comprising small filters (eg, 1 × 1 or 3 × 3). Although small filters can capture local spatial features with a few parameters, they fail to capture larger context information relevant for recognizing interactions between humans and distant objects owing to their small receptive regions. Hence, we herein propose a three-stream HOI detection network that employs a context convolution module (CCM) in each stream branch. The CCM can capture larger contexts from input feature maps by adopting combinations of large separable convolution layers and residual-based convolution layers without increasing the number of parameters by using fewer large separable filters. We evaluate our HOI detection method using two benchmark datasets, V-COCO and HICO-DET, and demonstrate its state-of-the-art performance.

Human Activity Recognition Using Spatiotemporal 3-D Body Joint Features with Hidden Markov Models

  • Uddin, Md. Zia;Kim, Jaehyoun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권6호
    • /
    • pp.2767-2780
    • /
    • 2016
  • Video-based human-activity recognition has become increasingly popular due to the prominent corresponding applications in a variety of fields such as computer vision, image processing, smart-home healthcare, and human-computer interactions. The essential goals of a video-based activity-recognition system include the provision of behavior-based information to enable functionality that proactively assists a person with his/her tasks. The target of this work is the development of a novel approach for human-activity recognition, whereby human-body-joint features that are extracted from depth videos are used. From silhouette images taken at every depth, the direction and magnitude features are first obtained from each connected body-joint pair so that they can be augmented later with motion direction, as well as with the magnitude features of each joint in the next frame. A generalized discriminant analysis (GDA) is applied to make the spatiotemporal features more robust, followed by the feeding of the time-sequence features into a Hidden Markov Model (HMM) for the training of each activity. Lastly, all of the trained-activity HMMs are used for depth-video activity recognition.

인류 보행의 진화: 컴퓨터 시뮬레이션 연구 (Evolution of Human Locomotion: A Computer Simulation Study)

  • 엄광문;하세카즈노리
    • 한국정밀공학회지
    • /
    • 제21권5호
    • /
    • pp.188-202
    • /
    • 2004
  • This research was designed to investigate biomechanical aspects of the evolution based on the hypothesis of dynamic cooperative interactions between the locomotion pattern and the body shape in the evolution of human bipedal walking The musculoskeletal model used in the computer simulation consisted of 12 rigid segments and 26 muscles. The nervous system was represented by 18 rhythmic pattern generators. The genetic algorithm was employed based on the natural selection theory to represent the evolutionary mechanism. Evolutionary strategy was assumed to minimize the cost function that is weighted sum of the energy consumption, the muscular fatigue and the load on the skeletal system. The simulation results showed that repeated manipulations of the genetic algorithm resulted in the change of body shape and locomotion pattern from those of chimpanzee to those of human. It was suggested that improving locomotive efficiency and the load on the musculoskeletal system are feasible factors driving the evolution of the human body shape and the bipedal locomotion pattern. The hypothetical evolution method employed in this study can be a new powerful tool for investigation of the evolution process.

Boosting Multifactor Dimensionality Reduction Using Pre-evaluation

  • Hong, Yingfu;Lee, Sangbum;Oh, Sejong
    • ETRI Journal
    • /
    • 제38권1호
    • /
    • pp.206-215
    • /
    • 2016
  • The detection of gene-gene interactions during genetic studies of common human diseases is important, and the technique of multifactor dimensionality reduction (MDR) has been widely applied to this end. However, this technique is not free from the "curse of dimensionality" -that is, it works well for two- or three-way interactions but requires a long execution time and extensive computing resources to detect, for example, a 10-way interaction. Here, we propose a boosting method to reduce MDR execution time. With the use of pre-evaluation measurements, gene sets with low levels of interaction can be removed prior to the application of MDR. Thus, the problem space is decreased and considerable time can be saved in the execution of MDR.