• Title/Summary/Keyword: Human blastocyst

Search Result 124, Processing Time 0.024 seconds

The Effects of the Epithelial Cells of Genital Tract on the Development of Mouse Early Embryos and Human Fertilized Oocytes (생쥐 초기배아와 사람의 수정란의 발생에 미치는 생식수관 상피세포의 영향에 관한 연구)

  • Lee, H.J.;Byun, H.K.;Kim, J.W.;Hwang, J.H.;Jun, J.Y.;Kim, M.K.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.21 no.3
    • /
    • pp.315-323
    • /
    • 1994
  • Mammalian oviductal epithelial cells have been known to improve in vitro fertilization and embryonic development. Recently, co-cultured human embryos with the epithelial cells in human genital tract has been reported to improve the pregnancy rate. The purpose of the study was to investigate the effects of the epithelial cells of human genital tract on the development of mouse early embryos and human fertilized oocytes. The epithelial cells of human genital tract were collected from the fallopian tubes which were obtained during hysterectomy in fertile women and from the endometrium during endometrium biopsy. Collected human ampullary cells(HACs) and endometrial cells(HECs) were cultured for 10 days to establish primary monolayer. Second passaged HACs and HECs were obtained by trypsinization were cryopreserved in PBS with 1.5 M DMSO for later use. To investigate the effect when co-cultured with HACs and HECs, we tried to apply strict quality control on mouse embryo, from two cell to blastocyst prior to human trial. The results of quality control were as follows; In Group I (Ham's F10 with 10% FCS), Group IT (co-cultured with HACs) and Group ill (co-cultured with HECs), developmental rates to blastocyst were 63.3%(253/400), 76.0%(304/ 400),74.0%(296/400), respectively. Hatching rates were 36.8%(147/400), 41.80/0(167/400), 38.0%(152/400), respectively(p<0.05). To perform the human IVF, cryopreserved HACs were thawed at 37$^{\circ}C$ waterbath, seeded on the well dish and cultured for 48 hI'S. The pronuclear stage embryos were transferred to the seeded well dish. After 24 hRS, co-cultured embryos were examined and transferred to patient's uterus. The results of human IVF when co-cultured with HACs were that fertilization and developmental rates were 61.8% (256/414), 95.3% (244/256) as compared with 57.2% (279/488) and 94.6%(264/279) in Ham's F10 supplemented with 10% FCS(control). However, 62.9% (161/256) of co-cultured human embryos showed good embryos(no or slight fragmentation) as compared with 53.8 % (150/279) in control(p < 0.05). Pregnancy rate was 40.0% (12/30) when co-cultured with HACs whereas 30.6%(11/36) in control. In conclusions, co-culture system using HACs and HECs improved the developmental and hatching rates of mouse embryo. Also, in human IVF system when co-cultured with HACs, it improved both the quality of human embryos and the pregnancy rate.

  • PDF

Mouse Embryo Culture as Quality Control for Human In Vitro Fertilization (생쥐 체외수정 정도관리의 유용성에 관한 실험적 연구)

  • Lim, Young-Kyung;Park, Hyun-Jeong;Lee, Yu-Il
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.18 no.1
    • /
    • pp.49-53
    • /
    • 1991
  • The development of 2-cell mouse embryos to the blastocyst stage in vitro has been used as a quality control for the media empolyed for human in vitro fertilization. There was a comparison between the quality control data of the culture medium as ascertained by 2-cell mouse embryos development and sperm motility and the data from fertilization and cleavage of human oocytes. However, there was no obvious association between fertilization and cleavage of human oocytes and the quality of the medium ascertained by mouse embryo development and sperm motility.

  • PDF

Developmental competence and Effects of Coculture after Crypreservation of Blastomere-Biopsied Mouse Embryos as a Preclinical Model for Preimplantation Genetic Diagnosis (착상 전 유전진단 기술 개발의 동물실험 모델로서 할구 생검된 생쥐 배아에서 동결보존 융해 후 배아 발생 양상과 공배양 효과에 관한 연구)

  • Kim, Seok-Hyun;Kim, Hee-Sun;Ryu, Buom-Yong;Choi, Sung-Mi;Pang, Myung-Geol;Oh, Sun-Kyung;Jee, Byung-Chul;Suh, Chang-Suk;Choi, Young-Min;Kim, Jung-Gu;Moon, Shin-Yong;Lee, Jin-Yong;Chae, Hee-Dong;Kim, Chung-Hoon
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.27 no.1
    • /
    • pp.47-57
    • /
    • 2000
  • Objective: The effects of cryopreservation with or without coculture on the in vitro development of blastomere-biopsied 8-cell mouse embryos were investigated. This experimental study was originally designed for the setup of a preclinical mouse model for the preimplantation genetic diagnosis (PGD) in human. Methods: Eight-cell embryos were obtained after in vitro fertilization (IVF) from F1 hybrid mice (C57BL(표현불가)/CBA(표현불가)). Using micromanipulation, one to four blastomeres were aspirated through a hole made in the zona pellucida by zona drilling (ZD) with acid Tyrode's solution (ATS). A slow-freezing and rapid-thawing protocol with 1.5M dimethyl sulfoxide (DMSO) and 0.1M sucrose as cryoprotectant was used for the cryopreservation of blastomere- biopsied 8-cell mouse embryos. After thawing, embryos were cultured for 110 hours in Ham's F-10 supplemented with 0.4% bovine serum albumin (BSA). In the coculture group, embryos were cultured for 110 hours on the monolayer of Vero cells in the same medium. The blastocyst formation was recorded, and the embryos developed beyond blastocyst stage were stained with 10% Giemsa to count the total number of nuclei in each embryo. Results: The survival rate of embryos after cryopreservation was significantly lower in the blastomere-biopsied (7/8, 6/8, 5/8, and 4/8 embryos) groups than in the non-biopsied, zona intact (ZI) group. Without the coculture, the blastocyst formation rate of embryos after cryopreservation was not significantly different among ZI, the zona drilling only (ZD), and the balstomere-biopsied groups, but it was significantly lower than in the non-cryopreserved control group. The mean number of cells in embryos beyond blastocyst stage was significantly higher in the control group ($50.2{\pm}14.0$) than in 6/8 ($26.5{\pm}6.2$), 5/8 ($25.0{\pm}5.5$), and 4/8 ($17.8{\pm}7.8$) groups. With the coculture using Vero cells, the blastocyst formation rate of embryos after cryopreservation was significantly lower in 5/8 and 4/8 groups, compared with the control, 7/8, and 6/8 groups. The mean number of cells in embryos beyond blastocyst stage was also significantly lower in 4/8 group ($25.9{\pm}10.2$), compared with the control ($50.2{\pm}14.0$), 7/8 ($56.0{\pm}22.2$), and 6/8 ($55.3{\pm}25.5$) groups. Conclusion: After cryopreservation, blastomere-biopsied mouse embryos have a significantly impaired developmental competence in vitro, but this detrimental effect might be prevented by the coculture with Vero cells in 8-cell mouse embryos biopsied one or two blastomeres. Biopsy of mouse embryos after ZD with ATS is a safe and highly efficient preclinical model for PGD of human embryos.

  • PDF

Comparison of elective single cleavage-embryo transfer to elective single blastocyst-embryo transfer in human IVF-ET

  • Kang, Sang-Min;Lee, Sang-Won;Jeong, Hak-Jun;Yoon, San-Hyun;Lim, Jin-Ho;Lee, Seong-Goo
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.38 no.1
    • /
    • pp.53-60
    • /
    • 2011
  • Objective: This study was carried out to compare the clinical outcome of elective single cleavage-embryo transfer (eSCET) to that of elective single blastocyst-embryo transfer (eSBET) in human IVF-ET. Methods: This study was a retrospective study which analyzed for 614 women who visited the Daegu Maria Clinic from August 2008 to December 2009. All were under 37 years old and had more than 8 mm of endometrial thickness on the day of hCG administration and at least one good quality embryo on day 3. The eSCETs were performed on day 3 (n=450) and the eSBETs were conducted on day 5 (n=164). Results: The numbers of retrieved oocytes, fertilized oocytes, and day 3 good quality embryos were significantly lower in the eSCET group (12.1${\pm}$6.0, 8.2${\pm}$4.6, and 4.2${\pm}$3.1, respectively) compared to the eSBET group (16.7${\pm}$7.2, 12.1${\pm}$5.0, and 8.5${\pm}$4.5, respectively; p<0.001). However, the clinical pregnancy, implantation, on-going pregnancy, and live birth rates of the eSCET group (46.7, 46.9, 40.0, and 36.7%, respectively) were not statistically different from those of the eSBET group (51.2, 51.8, 45.1, and 43.9%, respectively; p=0.318, 0.278, 0.254, and 0.103, respectively). Conclusion: These results suggested that elective single embryo transfer should be performed regardless of the developmental stage to women less than 37 years old who had more than 8 mm of endometrial thickness on the hCG administration day and at least one good quality embryo on day 3 in order to reduce the twin pregnancy rate without reducing the whole pregnancy rate.

Feasibility of Coculture Method for Production of Chimeric Mice Using J1 Embryonic Stem Cells

  • Shin Hye-Jun;Park Sung-Sik;Kim Sun-Uk;Cho Sang-Mi;Han Ying-Hao;Kim Hyun-Sun;Kim Sang-Geun;Lee Dong-Seok;Yu Dae-Yeul
    • Biomedical Science Letters
    • /
    • v.10 no.4
    • /
    • pp.391-395
    • /
    • 2004
  • The demand for the production of gene-defective mice from embryonic stem (ES) cells is increasing to clarify decisive gene function in vivo. Although blastocyst injection is widely used to generate ES cell-mediated knockout mice, coculture method has been alternatively used because of several advantages, such as low cost and simple procedure. Thus, this experiment was designed to demonstrate the feasibility of the coculture method using J1 ES cells, which are known to be efficient for blastocyst injection. Eight-cell embryos were harvested from 2.5 days post-coitum (dpc), denuded with acid tyrode's solution, and transferred onto trypsinized J1 ES cells. Aggregation was carried out following two typical methods, which are simple coculture method and aggregation in groove prepared by aggregation needle. Successfully aggregated-embryos were developed to blastocysts for 24 h and transferred into uterus of pseudo-pregnant foster mother. Chimeric offspring was judged by coat pigmentation. In this study, we could obtain chimeric mice from all the two aggregation methods, but the chimera production efficiencies in coculture using groove were three times higher at least than those in the other group. In conclusion, these observations suggest that coculture method should be available for production of knockout mice from J1 ES cells. Presently, the germ-line transmission rates of the chimeras produced from the two methods are under investigation.

  • PDF

Study on In Vitro Maturation and Culture of Immature Oocytes Collected from Ovaries of Infertile Women (불임 여성의 난소로부터 회수된 미성숙 난자의 체외 성숙과 배양에 관한 연구)

  • Lee, Seok-Yoon;Son, Won-Young;Yoon, San-Hyun;Lee, Won-Don;Park, Chang-Sik;Lim, Jin-Ho
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.30 no.4
    • /
    • pp.333-340
    • /
    • 2003
  • Objective: This study was performed to examine the maturation and the development to the blastocyst stage of immature oocytes collected from patients with high risk of ovarian hyperstimulation syndrome (OHSS). Materials and Methods: Cumulus-oocyte complexes (COCs) were collected following only HCGpriming for non stimulated IVF-ET cycles of the patients. At the time of oocyte collection, COCs were classified into three groups in accordance with their appearance (Group I: oocytes with dispersed cumulus cells; Group II: oocytes with compacted cumulus cells; Group III: oocytes with sparse cumulus cells). The in vitro maturation and blastocyst development rates of the COCs were compared among these groups. From August 2001 to June 2002, 48 IVM/IVF-ET cycles from 42 patients (mean age: $32.4{\pm}3.8$ years) were performed. To prevent the occurrence of OHSS, the patients were primed with 10, 000 IU HCG alone 36 h before oocyte collection without gonadotropin stimulation. Oocytes were aspirated on cycle days from 7 to 13. The normal COCs were classified into three groups according to their appearance. The aspirated immature oocytes were cultured in YS maturation medium containing 30% (v/v) human follicular fluid (HFF), 1 IU/ml FSH, 10 IU/ml HCG and 10 ng/ml rhEGF. Fertilization was induced by intracytoplasmic sperm injection (ICSI). All zygotes were co-cultured with cumulus cells in $10{\mu}l$ YS medium containing 10% HFF until day 7 after oocyte collection. Blastocyst transfer was performed on day 5 after ICSI. Results: Th e mean number of oocytes cultured in the IVM/IVF cycles was $24.7{\pm}10.6$. Of 1185 COCs, those assigned to Group I, II and III were 470 (39.7%), 414 (35.0%) and 301 (25.4%), respectively. The maturation rate (94.5%, 444/470, p<0.05) in Group I was significantly higher than those of Group II (62.8%, 260/414) and Group III (73.1%, 220/301). Especially, 30.9% of COCs in Group I (145/470) was matured on the day of oocyte aspiration. There were no differences in the rates of fertilization and cleavage among the three groups. The development rate to the blastocyst stage in Group I (54.6%, 206/377, p<0.05) was also significantly higher than those in Group II (33.0%, 68/206) and Group III (30.1%, 52/173). Twenty-four clinical pregnancies (50.0%) was obtained and 22 pregnancies (45.8%) are ongoing. Implantation rate in the present study was 24.6%. Conclusion: These results suggest that there is a positive correlation between the appearance of COCs and the developmental competence of the immature oocytes in non stimulated IVM/IVF cycles.

Effect of Energy Sources (Glucose, Pyruvate and Lactate) Added to Dulbecco's Modified Eagle Medium (DMEM) on the Mouse 2-cell Embryo Development (Glutamine 함유 배양액에 첨가한 에너지원이 마우스의 배 발달에 미치는 영향)

  • Kim, Ju-Hwan;Park, Kee-Sang;Lee, Taek-Hoo;Chun, Sang-Sik;Song, Hai-Bum
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 2000
  • Objective: Mammalian embryos undergo changes of energy environment for transfer from oviduct to uterus. Also, the human reproductive organ (oviduct, uterus) contains energy sources of different concentration (oviduct - glucose: 0.5 mM, pyruvate: 0.32 mM, lactate: 10.5 mM; uterus - goucose: 3.15 mM, pyruvate: 0.1mM, lactate: 5.87 mM, respectively). This study was conducted to examine the effect of these energy sources added in DMEM with glutamine on the mouse embryo development. Methods: There was used ICR female mouse. Two cell embryos of mouse are collected by method of 'flushing'. Flushing fluid was used Ham's F-10 added to 20% FBS. The collected 2 cell embryos were cultured in media such as Control (only DMEM), group A and B (DMEM supplemented with 0.5 mM and 3.15 mM glucose), and group C and D (DMEM supplemented with 0.1 mM and 0.32 mM pyruvate), and group E and F (DMEM supplemented with 5.87 mM and 10.5 mM lactate). All experimental media supplemented with 20% hFF, respectively. Pattern of embryo development was observed to interval at 24hr during 96hr. Results : The media with glutamine added glucose (group A: 51.0%; group B: 48.4%) was significantly (p<0.05) higher than other experimental group in development into the morula stage after 24 hr in culture, but not significantly different compared with control and the rate of development into the blastocyst was significantly (p<0.05) low in the both of pyruvate (group C: 7.9% group D: 6.8%) and lactate (group E: 7.1%, group F: 7.1%) treatment group after 48 hr in culture. Development into the blastocyst and hatched balstocyst after 72 hr in culture revealed similarly in control (81.9%) and glucose treatment group (group A: 83.3%, group B: 82.8%). However, development into the hatched and attached blastocyst after 96hr in culture revealed significantly (p<0.05) development in the glucose treatment group (group A: 82.3%, group B: 78.5%) than control (63.2%), and its of pyruvate (group C: 34.1%, group D: 34.1%) and lactate (group E: 25.9%, group F: 33.3%) treatment group were significantly (p<0.05) lower than control similar to previous observations. Conclusion : The glucose added to the DMEM with only glutamine, as energy source, was highly to the rate of development compared with control, but the other energy sources were not, synthetically. Above refer to, the human reproductive organ (oviduct, uterus) contains energy sources of different concentration. Thus, further studies are will examine continuously to effects by interaction of different energy sources in the mouse embryo development, and these results will provide to foundation on the human embryo culture.

  • PDF

Effect Of Cocaine Administration on the Development of Mouse Embryos

  • Kim, Soo-Hee;Yang, Boo-Keun;Kim, Hyoung-Chun;Jhoo, Wang-Kee
    • Archives of Pharmacal Research
    • /
    • v.17 no.4
    • /
    • pp.209-212
    • /
    • 1994
  • Mophological normal of unfertilized oocytes, which was collected 12-14 hours after human Chorionic Gonadotropin(jCG) injection, was not influenced by chronically adiministration of cocaine for 2 weeks in mice. Proportion of normal unfertilized oocytes in non-cocaine treated group (control), `0 mg/kg and 20 mg/kg cocaine treated group based on body weight with subcutaneous(s.c.) daily injection of cocaine for 2 weeks were 92.9%, 85.6% and 90.9%, respectively. There is no significant difference between control and cocaine treated groups. Two to 8 cell stage embryos collected 24-48 hours post hCG in control group were 66.7%, whereas, 10 mg/kg and 20 mg/kg groups treated with cocaine was 12.5% and 27.3% respectively. Although control and treated groups are significantly different (p<0.05) the developmental score of 2 to 8 cell stage embryos collected at 24-48 hours post HCG, there is no difference between 10 mg/kg and 20 mg/kg treated with cocaine groups. These results indicated that the normal embryos of the roups of cocaine administration were significantly amested when compared with that of control group. The proportion of 2 to 8 cell stage embryo reaching the blastocyst stage, which were cultured 48-52 hours with 5% $Co_2$ in air at $37^{\circ}C$, were 93.9% in control group and, 70.4% and 71.9% in each 10 mg/kg and to blastocyst in vitro culture was significantly limited embryos obtained from cocanized mice compared with those of control mice. These results suggest that episode of cocaine intoxication can cause impaiment of early embrygenesis in the mouse.

  • PDF

Effects of the Additives in the Medium for In Vitro Culture of Mouse Embryos (배양액 첨가제가 마우스 초기배의 체외배양에 미치는 효과)

  • 이일동;박홈대;송해범
    • Korean Journal of Animal Reproduction
    • /
    • v.22 no.3
    • /
    • pp.229-235
    • /
    • 1998
  • These experiments were conducted to investigate the effects and optimal concentrations of RPMI 1640 amino acids, MEM vitamins and human follicular fluid(hFF) as additives in the medium for in vitro culture of mouse embryos. The results obtained were as follows. 1. The development rates of blastocyst stage were 54.5%, 65.4%, 48.2%, 57.4% and 35.5% when the medium was added to 0.25%, 0.5%, 1%, 2% of RPMI 1640 amino acid and control, respectively. The addition of 0.5% RPMI 1640 amino acid was the best concentration. 2. The development rates of blastocyst stage were 22.4%, 31.3%, 21.9%, 19.0% adn 12.8% when the medium was added to 0.25%, 0.5%, 1%, 2% of MEM vitamin and control, respectively. The addition of 0.5% MEM vitamin was the best concentration. 3. The development rates of blastocyst stage were 20.9%, 21.9%, 18.9%, 29.4% and 20.6% when the medium was added to 2.5%, 5%, 10%, 20% of hFF and control, respectively.

  • PDF

An update of preimplantation genetic diagnosis in gene diseases, chromosomal translocation, and aneuploidy screening

  • Chang, Li-Jung;Chen, Shee-Uan;Tsai, Yi-Yi;Hung, Chia-Cheng;Fang, Mei-Ya;Su, Yi-Ning;Yang, Yu-Shih
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.38 no.3
    • /
    • pp.126-134
    • /
    • 2011
  • Preimplantation genetic diagnosis (PGD) is gradually widely used in prevention of gene diseases and chromosomal abnormalities. Much improvement has been achieved in biopsy technique and molecular diagnosis. Blastocyst biopsy can increase diagnostic accuracy and reduce allele dropout. It is cost-effective and currently plays an important role. Whole genome amplification permits subsequent individual detection of multiple gene loci and screening all 23 pairs of chromosomes. For PGD of chromosomal translocation, fluorescence $in-situ$ hybridization (FISH) is traditionally used, but with technical difficulty. Array comparative genomic hybridization (CGH) can detect translocation and 23 pairs of chromosomes that may replace FISH. Single nucleotide polymorphisms array with haplotyping can further distinguish between normal chromosomes and balanced translocation. PGD may shorten time to conceive and reduce miscarriage for patients with chromosomal translocation. PGD has a potential value for mitochondrial diseases. Preimplantation genetic haplotyping has been applied for unknown mutation sites of single gene disease. Preimplantation genetic screening (PGS) using limited FISH probes in the cleavage-stage embryo did not increase live birth rates for patients with advanced maternal age, unexplained recurrent abortions, and repeated implantation failure. Polar body and blastocyst biopsy may circumvent the problem of mosaicism. PGS using blastocyst biopsy and array CGH is encouraging and merit further studies. Cryopreservation of biopsied blastocysts instead of fresh transfer permits sufficient time for transportation and genetic analysis. Cryopreservation of embryos may avoid ovarian hyperstimulation syndrome and possible suboptimal endometrium.