• Title/Summary/Keyword: Human amniotic mesenchymal stem cell

Search Result 6, Processing Time 0.023 seconds

Long-term Cryopreservation of Mesenchymal Stem Cells Derived from Human Eyelid Adipose and Amniotic Membrane: Maintenance of Stem Cell Characteristics

  • Song, Yeon-Hwa;Park, Se-Ah;Yun, Su-Jin;Yang, Hye-Jin;Yoon, A-Young;Kim, Haek-Won
    • Development and Reproduction
    • /
    • v.15 no.4
    • /
    • pp.339-347
    • /
    • 2011
  • Human eyelid adipose-derived stem cells (hEAs) and amniotic mesenchymal stem cells (hAMs) are very valuable sources for the cell therapeutics. Both types of cells have a great proliferating ability in vitro and a multipotency to differentiate into adipocytes, osteoblasts and chondrocytes. In the present study, we evaluated their stem cell characteristics after long-time cryopreservation for 6, 12 and 24 months. When frozen-thawed cells were cultivated in vitro, their cumulative cell number and doubling time were similar to freshly prepared cells. Also they expressed stem cell-related genes of SCF, NANOG, OCT4, and TERT, ectoderm-related genes of NCAM and FGF5, mesoderm/endoderm-related genes of CK18 and VIM, and immune-related genes of HLA-ABC and ${\beta}$2M. Following differentiation culture in appropriate culture media for 2-3 weeks, both types of cells exhibited well differentiation into adipocyte, osteoblast, and chondrocyte, as revealed by adipogenic, osteogenic or chondrogenic-specific staining and related genes, respectively. In conclusion, even after long-term storage hEAs and hAMs could maintain their stem cell characteristics, suggesting that they might be suitable for clinical application based on stem cell therapy.

Evaluation of Osteoinduction Efficacy of Human Amniotic Membrane (인체 양막의 골형성유도능 평가)

  • Han, Jung-Wook;Seo, Young-Kwon;Park, Jung-Keug;Song, Kye-Yong
    • KSBB Journal
    • /
    • v.23 no.4
    • /
    • pp.291-296
    • /
    • 2008
  • Amniotic membrane (AM) has been used in various medical application such as biomaterials and it has a biocompatibility and wound healing effects. In this studies, we made AM sponge that was homogenized with AM and then lyophilized. And osteoinduction efficacy of AM sponge was evaluated with collagen sponge by mesenchymal stem cell culture and implantation in nude mouse. As a result of this study, adhesion and proliferation of MSC cells on AM sponge and collagen sponge were not different, but AM sponge was more superior to collagen sponge for induction of collagen secretion and calcium adhesion in matrix in vivo. Besides, AM sponges were more positive stained than collagen sponge about osteocalcin and osteonectin. As a results of this study, there is possibility of doing that AM could increase osteoinduction.