• Title/Summary/Keyword: Human adipose-derived stem cell

Search Result 60, Processing Time 0.023 seconds

Tracking Intravenous Adipose-Derived Mesenchymal Stem Cells in a Model of Elastase-Induced Emphysema

  • Kim, You-Sun;Kim, Ji-Young;Shin, Dong-Myung;Huh, Jin Won;Lee, Sei Won;Oh, Yeon-Mok
    • Tuberculosis and Respiratory Diseases
    • /
    • v.77 no.3
    • /
    • pp.116-123
    • /
    • 2014
  • Background: Mesenchymal stem cells (MSCs) obtained from bone marrow or adipose tissue can successfully repair emphysematous animal lungs, which is a characteristic of chronic obstructive pulmonary disease. Here, we describe the cellular distribution of MSCs that were intravenously injected into mice with elastase-induced emphysema. The distributions were also compared to the distributions in control mice without emphysema. Methods: We used fluorescence optical imaging with quantum dots (QDs) to track intravenously injected MSCs. In addition, we used a human Alu sequence-based real-time polymerase chain reaction method to assess the lungs, liver, kidney, and spleen in mice with elastase-induced emphysema and control mice at 1, 4, 24, 72, and 168 hours after MSCs injection. Results: The injected MSCs were detected with QD fluorescence at 1- and 4-hour postinjection, and the human Alu sequence was detected at 1-, 4- and 24-hour postinjection in control mice (lungs only). Injected MSCs remained more in mice with elastase-induced emphysema at 1, 4, and 24 hours after MSCs injection than the control lungs without emphysema. Conclusion: In conclusion, our results show that injected MSCs were observed at 1 and 4 hours post injection and more MSCs remain in lungs with emphysema.

Analysis of Global Gene Expression Profile of Human Adipose Tissue Derived Mesenchymal Stem Cell Cultured with Cancer Cells (암세포주와 공동 배양된 인간 지방 조직 유래 중간엽 줄기 세포의 유전자 발현 분석)

  • Kim, Jong-Myung;Yu, Ji-Min;Bae, Yong-Chan;Jung, Jin-Sup
    • Journal of Life Science
    • /
    • v.21 no.5
    • /
    • pp.631-646
    • /
    • 2011
  • Mesenchymal stem cells (MSC) are multipotent and can be isolated from diverse human tissues including bone marrow, fat, placenta, dental pulp, synovium, tonsil, and the thymus. They function as regulators of tissue homeostasis. Because of their various advantages such as plasticity, easy isolation and manipulation, chemotaxis to cancer, and immune regulatory function, MSCs have been considered to be a potent cell source for regenerative medicine, cancer treatment and other cell based therapy such as GVHD. However, relating to its supportive feature for surrounding cell and tissue, it has been frequently reported that MSCs accelerate tumor growth by modulating cancer microenvironment through promoting angiogenesis, secreting growth factors, and suppressing anti-tumorigenic immune reaction. Thus, clinical application of MSCs has been limited. To understand the underlying mechanism which modulates MSCs to function as tumor supportive cells, we co-cultured human adipose tissue derived mesenchymal stem cells (ASC) with cancer cell lines H460 and U87MG. Then, expression data of ASCs co-cultured with cancer cells and cultured alone were obtained via microarray. Comparative expression analysis was carried out using DAVID (Database for Annotation, Visualization and Integrated Discovery) and PANTHER (Protein ANalysis THrough Evolutionary Relationships) in divers aspects including biological process, molecular function, cellular component, protein class, disease, tissue expression, and signal pathway. We found that cancer cells alter the expression profile of MSCs to cancer associated fibroblast like cells by modulating its energy metabolism, stemness, cell structure components, and paracrine effect in a variety of levels. These findings will improve the clinical efficacy and safety of MSCs based cell therapy.

Interactions of Low-Temperature Atmospheric-Pressure Plasmas with Cells, Tissues, and Biomaterials for Orthopaedic Applications

  • Hamaguchi, Satoshi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.20-20
    • /
    • 2011
  • It has been known that, under certain conditions, application of low-temperature atmospheric-pressure plasmas can enhance proliferation of cells. In this study, conditions for optimal cell proliferation were examined for various cells relevant for orthopaedic applications. Plasmas used in our experiments were generated by dielectric barrier discharge (DBD) with a helium flow (of approximately 3 litter/min) into ambient air at atmospheric pressure by a 10 kV~20 kHz power supply. Such plasmas were directly applied to a medium, in which cells of interest were cultured. The cells examined in this study were human synoviocytes, rat mesenchymal stem cells derived from bone marrow or adipose tissue, a mouse osteoblastic cell line (MC3T3-E1), a mouse embryonic mesenchymal cell line (C3H-10T1/2), human osteosarcoma cells (HOS), a mouse myoblast cell line (C2C12), and rat Schwann cells. Since cell proliferation can be enhanced even if the cells are not directly exposed to plasmas but cultured in a medium that is pre-treated by plasma application, it is surmised that long-life free radicals generated in the medium by plasma application stimulate cell proliferation if their densities are appropriate. The level of free radical generation in the medium was examined by dROMs tests and correlation between cell proliferation and oxidative stress was observed. Other applications of plasma medicine in orthopaedics, such as plasma modification of artificial bones and wound healing effects by direct plasma application for mouse models, will be also discussed. The work has been done in collaboration with Prof. H. Yoshikawa and his group members at the School of Medicine, Osaka University.

  • PDF

Effects of Magnolia Officinalis Bark Extract on Improvement of Lip Wrinkles (요엽후박나무 추출물의 입술 주름 개선에 대한 연구)

  • Lee, Seonju;Kim, Mina;Park, Sung Bum;Kim, Ki Young;Park, Sun-Gyoo;Kim, Mi-Sun;Kang, Nae-Gyu
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.45 no.1
    • /
    • pp.95-103
    • /
    • 2019
  • Lips have a defect in maintenance of moisture due to their thin layer. As aging progresses, lips lose volume and redness, and become wrinkled. Fat grafting and filler surgery have been used to achieve attractive lips, but little research has been reported to develop better materials to replace the present methods. Recently, a study suggests that the increase of adipocyte number can be enhancing the expansion endogenous fat. In previous study, we identified that the efficacy of Magnolia officinalis bark extract (MOBE) was effective on the induction of adipogenic differentiation. In this study, we confirmed that MOBE enhanced the differentiation of human adipose-derived stem cells on the fat mimic 3D structure built by 3D bioprinting method From further experiments in human, we established a method to quantify the severity of lip wrinkle by measurement of standard deviation of gray value using Image J software. Finally, we found that topical treatment with 1% MOBE formulated lip balm significantly improved the lip wrinkle after using for 12 weeks. In conclusion, these findings suggest that MOBE has great potential, as a cosmetic ingredient, to reduce the lip wrinkle through the effect of promoting adipogenic differentiation.

Osteogenesis of Human Adipose Tissue Derived Mesenchymal Stem Cells (ATMSCs) Seeded in Bioceramic-Poly D,L-Lactic-co-Glycolic Acid (PLGA) Scaffold (Bioceramic-Poly D,L-Lactic-co-Glycolic Acid(PLGA) Scaffold에 접종한 인간지방조직-유래 중간엽 줄기세포의 골 형성)

  • Kang, Yu-Mi;Hong, Soon-Gab;Do, Byung-Rok;Kim, Hae-Kwon;Lee, Joon-Yeong
    • Development and Reproduction
    • /
    • v.15 no.2
    • /
    • pp.87-98
    • /
    • 2011
  • The present experiment was performed to evaluate the osteogenic differentiation of human adipose tissue derived mesenchymal stem cells (ATMSCs) seeded in bioceramic-poly D,L-latic-co-glycolic acid (PLGA) scaffold. Osteogenic differentiation of ATMSCs were induced using the osteogenic induction (OI) medium. ATMSCs were cultured with OI medium during 28 days in well plate. The proliferation of ATMSCs in OI medium group was significantly increased for 14 days of plate culture but slowed after 21 days. On the other hand, proliferation in the control group showed constant increase for 28 days of culturing. The alkaline phosphatase (ALP) activity of ATMSCs in OI medium group increased during the 21 days of culture but decreased on 28 days. However, in control group ALP activity of ATMSCs was continuously decreased as time goes. Nodule was observed at 21 days of culture in OI medium group and confirmed accumulation of calcium in cell by alizarin red staining. ATMSCs were seeded in PLGA scaffold or in Bioceramic-PLGA scaffold, and cultured with OI medium. ALP activity of ATMSCs by osteoblast differentiation in each scaffold increased on 21 days of culture and decreased rapidly on 28 days. ALP activity of ATMSCs was increased highly in Bioceramic-PLGA scaffold compared to PLGA scaffold on 21 days of culturing. SEM-EDS analysis demonstrated that calcium and phosphate content and Ca/P ratio in Bioceramic-PLGA scaffold increased higher than in PLGA scaffold. Biodegradability of scaffold at 56 days after implantation showed that Bioceramic-PLGA scaffold was more biodegradable than PLGA scaffold. The results demonstrated that the differentiation of ATMSCs to osteoblast were more effective in scaffold culture than well plate culture. Bioceramic increased cell adhesion rate on scaffold and ALP activity by osteoblast differentiation. Also, bioceramic was considered to increase the calcium and phosphate in scaffold when ATMSCs was mineralized by osteogenic differentiation. Bioceramic-PLGA scaffold enhanced the osteogenesis of seeded ATMSCs compared to PLGA scaffold.

Surface maker and gene expression of human adipose stromal cells growing under human serum. (인체혈청 하에서 배양한 인체지방기질줄기세포의 표면항원 및 유전자 발현)

  • Jun, Eun-Sook;Cho, Hyun-Hwa;Joo, Hye-Joon;Kim, Hoe-Kyu;Bae, Yong-Chan;Jung, Jin-Sup
    • Journal of Life Science
    • /
    • v.17 no.5 s.85
    • /
    • pp.678-686
    • /
    • 2007
  • Human mesenchymal stem cells(hMSC), that have been reported to be present in bone marrow, adipose tissues, dermis, muscles and peripheral blood, have the potential to differentiate along different lineages including those forming bone, cartilage, fat, muscle and neuron. Therefore, hMSC are attractive candidates for cell and gene therapy. The optimal conditions for hMSC expansion require medium supplemented with fetal bovine serum(FBS). Some forms of cell therapy will involve multiple doses, raising a concern over immunological reactions caused by medium-derived FBS proteins. Previously, we have shown that hADSC can be cultured in human serum(HS) during their isolation and expansion, and that they maintain their proliferative capacity and ability for multilineage differentiation and promote engraftment of peripheral blood-derived CD34 cells mobilized from bone marrow in NOD/SCID mice. In this study we determined whether hADSC grown in HS maintain surface markers expression similar with cells grown in FBS during culture expansion and compared gene expression profile by Affymetrix microarray. Flow cytometry analysis showed that HLA-DR, CD117, CD29 and CD44 expression in HS-cultured hADSC during culture expansion were similar with that in FBS-cultured cells. However, the gene expression profile in HS-cultured hADSC was significantly different from that in FBS-cultured cells. Therefore, these data indicated that HS-cultured hADSC should be used in vivo animal study of hADSC transplantation for direct extrapolation of preclinical data into clinical application.

Chondrogenesis of Human Adipose Tissue Derived Mesenchymal Stem Cells (ATMSCs) Seeded in Gelatin-Chondroitin-Glucosamine Scaffold (Gelatin-Chondroitin-Glucosamine Scaffold에 접종한 인간지방조직-유래 중간엽 줄기세포의 연골형성)

  • Kim, Eung-Bae;Hong, Soon-Gab;Do, Byung-Rok;Kim, Hae-Kwon;Lee, Joon-Yeong
    • Development and Reproduction
    • /
    • v.15 no.2
    • /
    • pp.99-111
    • /
    • 2011
  • The present experiment was performed to evaluate the chondrogenic differentiation potential of human adipose tissue-derived mesenchymal stem cells (ATMSCs) in the chondrogenic induction medium (CIM) with transforming growth factor-${\beta}1$ (TGF-${\beta}1$) and to evaluate the chondrogenic differentiation of ATMSCs seeded in gelatin-chondroitinglucosamine scaffold (GCG-scaffold). ATMSCs and mouse chondrocytes were cultured in the basic medium and CIM without TGF-${\beta}1$ (CIM1) or with TGF-${\beta}1$ (CIM2) for chondrogenic differentiation potential. The chondrogenic differentiation of ATMSCs was evaluated by glycosaminoglycan (GAG) synthesis and histochemical staining. In pellet culture, GAG synthesis of ATMSCs and chondrocyte was increased in culture on 14 days, but higher in CIM1 than basic medium, especially highest in CIM2. Cartilage matrix was observed in ATMSCs cultured in CIM2 on 14 days by Safranin O and trichrome staining. In well plate culture, proliferation of ATMSCs was continuously increased in culture on 10 days and higher in CIM than basic medium. The cell adhesion rate of ATMSCs seeded in flask or scaffolds was continuously increased during culture period, but higher in scaffold than flask. GAG synthesis of ATMSCs seeded in scaffolds showed no change in control group. In the CIM groups, GAG synthesis of ATMSCs was continuously increased than control group during culture period, especially very high in CIM2 and in the GCG-scaffold was slightly higher than the gelatin scaffold (G-scaffold). The present results demonstrated that ATMSCs showed an low chondrogenic differentiation potential, compared to mouse chondrocytes for 14 days of culture. TGF-${\beta}1$ is important factor in chondrogenic differentiation of ATMSCs. Gelatin scaffold was considered to increasing the effective chondrogenic differentiation environment. ATMSCs seeded in GCG-scaffold was more effective in chondrogenesis than in G-scaffold. Conclusively, the present results demonstrated that the treatment of chondroitin and glucosamine in the scaffold was more effective to promote the cartilage matrix formation.

Differentiation of Dopaminergic and Cholinergic Neurons from Mesenchymal-like Stem Cells Derived from the Adipose Tissue (사람 지방 유래 중간엽 줄기세포의 도파민성 및 콜린성 신경세포분화)

  • Hong, In-Kyung;Jeong, Na-Hee;Kim, Ju-Ran;Do, Byung-Rok;Kim, Hea-Kwon;Kang, Sung-Goo
    • Development and Reproduction
    • /
    • v.12 no.1
    • /
    • pp.31-39
    • /
    • 2008
  • Neural tissue has limited intrinsic capacity of repair after injury, and the identification of alternate sources of neural stem cells has broad clinical potential. We isolated mesechymal-like stem cells from human adipose tissues (AT-MSCs), and studied on transdifferentiation-promoting conditions in neural cells. Dopaminergic and cholinergic neuron induction of AT-MSCs was also studied. Neural differentiation was induced by adding bFGF, EGF, dimethyl sulphoxide (DMSO) and butylated hydroxyanisole(BHA) in N2 Medium and N2 supplement. The immunoreactive cells for $\beta$-tubulin III, a neuron-specific marker, GFAP, an astrocyte marker, or Gal-C, an oligodendrocyte marker, were found. AT-MSCs treated with bFGF, SHH and FGF8 were differentiatied into dopaminergic neurons that were immunopositive for TH antibody. Differentiation of MSCs to cholinergic neurons was induced by combined treatment with basic fibroblast growth factor (bFGF), retinoic acid (RA) and sonic hedgehog (Shh). AT-MSCs treated with DMSO and BHA rapidly assumed the morphology of multipolar neurons. Both immunocytochemistry and RT-PCR analysis indicated that the expression of a number of neural markers including neuro D1, $\beta$-tubulin III, GFAP and nestinwas markedly elevated during this acute differentiation. While the stem cell markers such as SCF, C-kit, and Stat-3 were not expressed after preinduction medium culture, we confirmed the differentiation of dopaminergic and cholinergic neurons by TH/$\beta$-tubulin III or ChAT/ $\beta$-tubulin III positive cells. Conclusively, AT-MSCs can be differentiated into dopaminergic and cholinergic neuronsand these findings suggest that AT-MSCs are alternative cell source of treatment for neurodegenerative diseases.

  • PDF

Comparative Analysis about the Effect of Isolated Phosphatidylcholine and Sodium Deoxycholate for the Viability of Adipocyte (Phosphatidylcholine과 Sodium Deoxycholate가 지방세포 생존에 미치는 영향의 비교 분석)

  • Rha, Eun-Young;Kang, Jo-A;Lee, Jung-Ho;Oh, Deuk-Young;Seo, Je-Won;Moon, Suk-Ho;Ahn, Sang-Tae;Rhie, Jong-Won
    • Archives of Plastic Surgery
    • /
    • v.37 no.5
    • /
    • pp.531-534
    • /
    • 2010
  • Purpose: Lipobean$^{(R)}$s, widely used in lipodissolving techniques, contain phosphatidylcholine and sodium deoxycholate as its main substances. They have been approved only as medication for liver disease by the FDA. However, they have been used under various clinical settings without exact knowledge of its action mechanism. The authors designed an in vitro study to analyze the effects of different concentrations of phosphatidylcholine and sodium deoxycholate on adipocytes and other types of cells. Methods: Human adipose-derived stem cell were cultured and induced to differentiate into adipocytes. Fibroblasts extracted from human inferior turbinate tissue, and MC3T3-E1 osteoblast lines were cultured. Phosphatidylcholine solution dissolved with ethanol was applied to the culture medium at differing concentrations (1, 4, 7, 10 mg/mL). The sodium deoxycholate solution dissolved in DMSO applied to the medium at differing concentrations (0.07, 0.1. 0.4. 0.7 mg/mL). Cells were dispersed at a concentration of $5{\times}10^3$ cells/well in 24 well plates, and surviving cells were calculated 1 day after the application using a CCK-8 kit. Results: The number of surviving cells of adipocytes, fibroblasts and osteoblasts decreased as the concentration of sodium deoxycholate increased. However, all types of cells that had been processed in a phosphatidylcholine showed a cell survival rate of over 70% at all concentrations. Conclusion: This study shows that sodium deoxycholate is the more major factor in destroying adipocytes, and it is also toxic to the other cells. Therefore, we conclude that care must be taken when using Lipobean$^{(R)}$s as a method of reducing adipose tissue, for its toxicity may destroy other nontarget cells existing in the subcutaneous tissue layer.

Anthraquinone Glycoside Aloin Induces Osteogenic Initiation of MC3T3-E1 Cells: Involvement of MAPK Mediated Wnt and Bmp Signaling

  • Pengjam, Yutthana;Madhyastha, Harishkumar;Madhyastha, Radha;Yamaguchi, Yuya;Nakajima, Yuichi;Maruyama, Masugi
    • Biomolecules & Therapeutics
    • /
    • v.24 no.2
    • /
    • pp.123-131
    • /
    • 2016
  • Osteoporosis is a bone pathology leading to increased fracture risk and challenging the quality of life. The aim of this study was to evaluate the effect of an anthraquinone glycoside, aloin, on osteogenic induction of MC3T3-E1 cells. Aloin increased alkaline phosphatase (ALP) activity, an early differentiation marker of osteoblasts. Aloin also increased the ALP activity in adult human adipose-derived stem cells (hADSC), indicating that the action of aloin was not cell-type specific. Alizarin red S staining revealed a significant amount of calcium deposition in cells treated with aloin. Aloin enhanced the expression of osteoblast differentiation genes, Bmp-2, Runx2 and collagen 1a, in a dose-dependent manner. Western blot analysis revealed that noggin and inhibitors of p38 MAPK and SAPK/JNK signals attenuated aloin-promoted expressions of Bmp-2 and Runx2 proteins. siRNA mediated blocking of Wnt-5a signaling pathway also annulled the influence of aloin, indicating Wnt-5a dependent activity. Inhibition of the different signal pathways abrogated the influence of aloin on ALP activity, confirming that aloin induced MC3T3-E1 cells into osteoblasts through MAPK mediated Wnt and Bmp signaling pathway.