• 제목/요약/키워드: Human Walking

검색결과 487건 처리시간 0.034초

척수마비환자 재활훈련용 보행보조기의 인체진동을 고려한 무릎관절 시스템 진동제어 (II) (Vibration Control of a Knee Joint considering Human Vibration of the Biped Walking RGO for a Trainning of Rehabilitation(II))

  • Kim, Myung-Hoe;Yang, Hyun-Seok;Baek, Yun-Soo;Park, Young-Pil;Park, Chang-Il
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.347.2-347
    • /
    • 2002
  • This paper presented a design and a Vibration control of a biped walking RGO(Robotic Gait Orthosis) and walking simulation by this system. The vibration evaluation of the Knee Joint Mechanism on the biped walking RGO(Robotic Galt Orthosis) was used to access by the 3-axis accelerometer with a low frequency vibration for the spinal cord injuries. It will be expect that the spinal cord injury patients are able to recover effectively by a biped walking RGO. (omitted)

  • PDF

인체형 이족보행로봇의 개발 (Development of a Human-Sized Biped Walking Robot)

  • 최형식;박용헌;김영식
    • 제어로봇시스템학회논문지
    • /
    • 제8권6호
    • /
    • pp.484-491
    • /
    • 2002
  • We developed a new type of human-sized BWR (biped walking robot) driven by a new actuator based on the ball screw which has high strength and high gear ratio. Each leg of the robot is composed of three pitch joints and one roll joint. In all, a 10 degree-of-freedom robot with two balancing joints was developed. A new type of actuator for the robot is proposed, which is composed of four bar link mechanism driven by the ball screw. The robot overcomes the limit of the driving torque of conventional BWRs. The BWR was designed to walk autonomously by adapting small DC motors for the robot actuators and has a space to board DC battery and controllers. In the performance test, the BWR performed sitting-up and down motion, and walking motion. Through the test, we found the possibility of a high performance biped-walking.

이족 보행 로봇의 그래픽 인터페이스 개발 (Development of Graphic interface for Biped walking robot)

  • 김영식;전대원;최형식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.507-510
    • /
    • 2002
  • We developed a human-sized BWR(biped walking robot) named KUBIRI driven by a new actuator based on the ball screw which has high strength and high gear ratio. KUBIRI was developed to walk autonomously such that it is actuated by small torque motors and is boarded with DC battery and controllers. To utilize informations on the human walking motion and to analyze the walking mode of robot, a motion capture system was developed. The system is composed of the mechanical and electronic devices to obtain the joint angle data. By using the obtained data, a 3-D graphic interfacer was developed based on the open inventor tool. Through the graphic interfacer, the control input of KUBIRI is performed.

  • PDF

트러스 구조를 기반으로 한 로봇 발 메커니즘 모델링 및 특성 분석 (Modeling and Analysis of Robotic Foot Mechanism Based on Truss Structure)

  • 김병호
    • 한국지능시스템학회논문지
    • /
    • 제22권3호
    • /
    • pp.347-352
    • /
    • 2012
  • 본 논문에서는 보행 로봇을위한 트러스 구조의 로봇 발 메커니즘을 제시한 후, 제시된 로봇 발 메커니즘의 특성을 분석하였다. 제시된 로봇 발 메커니즘은인간의 발의 구조적인 특징을 관찰하여 모델링 되었다. 특히, 인간의 발에 사용되고 있는 뼈대는 트러스로 나타내었고, 뼈대에 연결되어 있는 다양한 인대는 간단한 강성 요소로서 나타내었다. 따라서 이러한 로봇 발은 보행 로봇이 발걸음을 옮기는 과정에서 발에 작용되는 충격을 완화시킬 수 있는 장점을 갖는다. 결과적으로, 제안된 로봇 발 메커니즘은 보행로봇의 보행피로를 줄이는데 기여할 수 있다.

A comparative study on different walking load models

  • Wang, Jinping;Chen, Jun
    • Structural Engineering and Mechanics
    • /
    • 제63권6호
    • /
    • pp.847-856
    • /
    • 2017
  • Excessive vibrations can occur in long-span structures such as floors or footbridges due to occupant?s daily activity like walking and cause a so-called vibration serviceability issue. Since 1970s, researchers have proposed many human walking load models, and some of them have even been adopted by major design guidelines. Despite their wide applications in structural vibration serviceability problems, differences between these models in predicting structural responses are not clear. This paper collects 19 popular walking load models and compares their effects on structure?s responses when subjected to the human walking loads. Model parameters are first compared among all these models including orders of components, dynamic load factors, phase angles and function forms. The responses of a single-degree-of-freedom system with various natural frequencies to the 19 load models are then calculated and compared in terms of peak values and root mean square values. Case studies on simulated structures and an existing long-span floor are further presented. Comparisons between predicted responses, guideline requirements and field measurements are conducted. All the results demonstrate that the differences among all the models are significant, indicating that in a practical design, choosing a proper walking load model is crucial for the structure?s vibration serviceability assessment.

Development of walking assist system for the people with lower limb-disability

  • Kim, Seok-Hwan;Izumi, Keisuke;Koujina, Yasuhiro;Ishimatsu, Takakazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1495-1499
    • /
    • 2003
  • There is some equipment that helps user to exercise and to walk. But almost all equipments require some physical strength of their muscles. So we developed a system that could assist walking action of the people with lower-limb disability. The system called as walking stand adopted the balancing mechanism which assures the stable walking, and the 4 link-based mechanism that had 2 degrees of freedom on each leg. The walking stand uses four motors and has two sets of the special link-structure to simulate the human walking mechanism. With our system, even serious disabled with lower-limb disability may enjoy walking rehabilitation. And by adjusting the power, it can be used as the walking assistant mechanism instead of conventional wheelchairs. Experiments showed that our walking stand is applicable to the rehabilitation and also to the mobile device in our daily life for those people who do not have enough physical ability to walk by themselves.

  • PDF

소형사각 보행로보트의 제작과 정적걸음새의 구현 (Design of Small Scale Quadruped Walking Robot and Realiazion of Static Gait)

  • 배건우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.398-402
    • /
    • 1996
  • This paper addresses the design and the gait control of quadruped walking robot. First, we concern the mechanical and electronical(control system) hardware of walking robot, and the second is the results of experiments. The walking robot is the most suitable form to substitute fot human being. So walking robot is worthy of research. The quadruped walking robot and control system is the simplest type of walking robot, therefore we designed a small seale robot for realization of static gait. The robot is designed commpactly and its legs are constructed parallel link type and able to move freely in space. Control system consists of one upper level controller and four lower level controllers. The upper level controller plans the walking path and commands the low level controllers to follow the planned path. The main function of low level cotrollers is control of motors. Total number of motors is twealve and they operate four legs. And robot is ordered to walk and realize static wave gait.

  • PDF

보행하중을 받는 건축물 바닥판의 진동해석 (Vibration Analysis of Building Floor Subjected to Walking Loads)

  • 김기철;이동근
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.414-421
    • /
    • 2001
  • Recently, the damping effect of building structures are greatly reduced because the use of non-structures members as like curtain wall are decreased and large open space are in need for the service of buildings. Assembly and office buildings with a lower natural frequency have a higher possibility of experiencing excessive vibration induced by human activities as like jumping, running and walking. These excessive vibration make the occupants uncomfortable and the serviceability deterioration. The common method of application of walking loads for the vibration analysis of structures subjected to walking loads is to inflict a series unit walking load and a periodic function at a node. But this method could not consider the moving effect of walking. In this study, natural frequency and damping ratio of plate structure are evaluated by heel drop tests. And new application of equivalent walking loads are introduced for vibration analysis of real slab system subjected to walking loads. The response obtained from the numerical analysis are compared well to the results measured by experimental tests. It is possible to efficiently analyze the vibration of floor which is subjected to walking loads by applying equivalent walking loads.

  • PDF

실감의 가상 걸음을 위한 발판타입 이동인터페이스의 네비게이션 알고리즘 (A Navigation Algorithm using a Locomotion Interface with Programmable Foot Platforms for Realistic Virtual Walking)

  • 윤정원;류제하
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제12권6호
    • /
    • pp.358-366
    • /
    • 2006
  • 본 논문은 2개의 6자유도 제어가능 발판타입 플랫폼으로 이뤄진 이동인터페이스를 이용한 새로운 네비게이션 알고리즘을 제시하고 있다. 제안된 이동인터페이스는 2개의 플랫폼 위에 사람이 위치한 상태에서 사람의 걸음 모션을 센서시스템으로 예측하여 플랫폼 위에서 지속적인 걸음이 가능하도록 플랫폼을 제어하고 사용자 걸음 모션 정보를 가상환경에서의 네비게이션 입력정보로 사용한다. 따라서, 제안된 이동인터페이스는 사용자의 실제 걸음을 유도하고 걸음 동안 사용자에게 실감의 시각 피드백 제공으로 몰입감을 가지고 가상환경과 전신 운동의 상호작용을 할 수 있도록 허락한다. 이때, 가상환경 상에서 자연스런 네비게이션이 가능하도록 보행 분석에 사용되는 걸음 조건들을 사용하여 플랫폼 위에서의 자연스런 걸음 및 가상환경시스템에서의 자연스런 네비게이션이 가능토록 알고리즘을 제시하였다. 제안된 네비게이션 알고리즘 평가를 위해 3차원 객체모델러, 화면 매니져, 통신 매니져로 구성된 가상도시를 구축하여 발판타입 이동인터페이스에 네비게이션 알고리즘을 적용하였다. 실험 결과 평지 및 경사에서 사용자의 자연스런 걸음 및 시각 피드백이 가능함을 알 수 있었고, 제안된 이동인터페이스 및 네비게이션 알고리즘을 통해 다양한 형상의 가상지면에서 실감의 네비게이션이 가능함을 확인하였다.