• Title/Summary/Keyword: Human Thrombopoietin (hTPO) Gene

Search Result 10, Processing Time 0.02 seconds

Expression of the EPO-like Domains of Human Thrombopoietin in Escherichia coli

  • Koh, Yeo-Wook;Koo, Tai-Young;Ju, Sang-Myoung;Kwon, Chang-Hyuk;Chung, Joo-Young;Park, Myung-Hwan;Yang, Jai-Myung;Park, Seung-Kook
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.6
    • /
    • pp.553-559
    • /
    • 1998
  • cDNA of human thrombopoietin (hTPO) amplified by polymerase chain reaction from a cDNA library of human fetal liver was cloned. EPO-like domains ($hTPO_{153} \;or\; hTPO_{l63})\; of\; hTPO(hTPO_{332}$) were expressed in Escherichin coli using several kinds of expression systems, such as ompA secretion, thioredoxin fusion, and the $P_L$ and T7 expression systems. To obtain $hTPO_{153}$ in soluble form, $hTPO_{153}$ cDNA was fused in-frame behind the gene encoding ompA signal sequence and thioredoxin protein. When fused with either of the genes, $hTPO_{153}$ was not expressed to the detectable level. However, a high level expression of the EPO-like domain of hTPO was obtained using the PL and T7 expression system. $hTPO_{153} \;or\; hTPO_{l63} cDNA were subcloned into the pLex and pET-28a(+) vectors under the control of the inducible$ P_L\;T_7$ promoter, respectively. Proteins expressed using pl.ex vector and pET-28a(+) detected in insoluble forms with an expression level of about 14% and 9% of total cellular proteins, respectively, and the level of expression was rapidly diminished in 2 h after the maximum level of expression was reached.

  • PDF

Generation of Transgenic Chickens that Produce Bioactive Human Thrombopoietin (재조합 hTPO를 생산하는 형질전환 닭의 개발)

  • Kwon, Mo-Sun;Koo, Bon-Chul;Roh, Ji-Yeol;Lee, Hyun-A;Kim, Te-Oan
    • Reproductive and Developmental Biology
    • /
    • v.32 no.3
    • /
    • pp.159-166
    • /
    • 2008
  • We report here the generation of transgenic chickens that produce human Thrombopoietin (hTPO) using replication-defective Moloney murine leukemia virus (MoMLV)-based vectors packaged with vesicular stomatitis virus G glycoprotein (VSV-G). For the retrovirus vectors, we used hCMV (human Cytomegalovirus) internal promoter to drive the hTPO gene. After confirming the expression of the hTPO gene in various target cells, the concentrated solution of recombinant retrovirus was injected beneath the blastoderm of non-incubated chicken embryos (stage X). The biological activity of the recombinant hTPO in target cell was significantly higher than its commercially available counterpart. Out of 132 injected eggs, 11 chicks hatched after 21 days of incubation and 4 hatched chicks were found to express vector-encoded hTPO gene. However, 3 out of the 4 transgenics died within one month of hatching. The major significance of this study is that it is one of the very few successful reports on the production of transgenic chickens as bioreactors aiming mass production of commercially valuable and biological active human cytokine proteins.

Development of Recombinant Chinese Hamster Ovary Cell Lines Producing Human Thrombopoietin or Its Analog

  • Chung, Joo-Young;Ahn, Hae-Kyung;Lim, Seung-Wook;Sung, Yun-Hee;Koh, Yeo-Wook;Park, Seung-Kook;Lee, Gyun-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.5
    • /
    • pp.759-766
    • /
    • 2003
  • Recombinant Chinese hamster ovary (rCHO) cell lines expressing a high level of human thrombopoietin (hTPO) or its analog, TPO33r, were obtained by transfecting expression vectors into dihydrofolate reductase-deficient (dhfr) CHO cells and subsequent gene amplification in media containing stepwise increments in methotrexate (MTX) level such as 20, 80, and 320 nM. The parental clones with a hTPO expression level $>0.40\;{\mu}g/ml$ (27 out of 1,200 clones) and the parental clones with a TPO33r expression level $>0.20\;{\mu}g/ml$ (36 out of 400 clones) were subjected to 20 nM MTX. The clones that displayed an increased expression level at 20 nM MTX were subjected to stepwise increasing levels of MTX such as 80 and 320 nM. When subjected to 320 nM MTX, most clones did not display an increased expression level, since the detrimental effect of gene amplification on growth reduction outweighed its beneficial effect of specific TPO productivity ($q_{TPO}$) enhancement at 320 nM MTX. Accordingly, the highest producer subclones ($1-434-80^{*}$ for hTPO and $2-3-80^{*}$ for TPO33r), whose $q_{TPO}$ was 2- to 3-fold higher than that of their parental clones selected at 80 nM MTX, were isolated by limiting dilution method and were established as rCHO cel1 lines. The $q_{TPO}$ of $1-434-80^{*}\;and\;2-3-80^{*}\;was\;5.89{\pm}074\;and\;1.02{\pm}0.23\;{\mu}g/10^6$ cells/day, respectively. Southern and Northern blot analyses showed that the enhanced $q_{TPO}$ of established rCHO cell lines resulted mainly from the increased TPO gene copy number and subsequent increased TPO mRNA level. The hTPO and TPO33r produced from the established rCHO cell lines were biologically active in vivo, as demonstrated by their ability to elevate platelet counts in treated mice.

Production of Cloned Bovine Embryos Carrying with Human Thrombopoietin Gene

  • K.I. Wee;B.H. Son;Park, Y.H.;Park, J.S.;D.H. Ko;Lee, K.K.;Y.M. Han
    • Proceedings of the KSAR Conference
    • /
    • 2001.03a
    • /
    • pp.60-60
    • /
    • 2001
  • Human thrombopoietin (hTPO) is a cytokine that plays a central role in megakaryopoiesis by influencing on the development and maturation of megakaryocyte and platelet production. To induce hTPO production in the mammary gland, expression vector was constructed by combining the promoter of bovine beta-casein gene, cDNA of hTPO and neomycine resistance gene for transfection into fibroblasts. Bovine fibroblast cells derived from female ear skin were transfercted with the expression vector using Lipofectamine (Life Technology, NY). Transected cells resistant to G4l8 treatment (600 $\mu\textrm{g}$/$m\ell$) were recovered and colony formation was initiated at 13 days. The colonies with about 1 cm diameter were picked and analysed by PCR. Single transfected cells were individually transferred to enucleated oocytes. After electrofusion, the reconstructed embryos were exposed to calcium ionophore (5uM) for 5 min followed by treatment with 6-DMAP (2.5 mM) for 4h. The nuclear transfer embryos were cultured in CRlaa medium at 38.5C, 5% $CO_2$ for 7 days. Twenty three of 29 (79.3%) colonies were proved to be hTPO transfectants by PCR. The colonies were further passaged and used to produce transgenic embryos using nuclear transfer. Cleavage and developmental rates of reconstructed embryos to the blastocyst stage were 65.1% and 39.4%, respectively Of 22 blastocysts that developed from reconstructed embryos with the transfected cell, 20 embryos (90.9%) were positive for hTPO by using PCR analysis. The results suggest that somatic cell nuclear transfer is efficient for production of transgenic embryos.

  • PDF

Production of hTPO Transgenic Chickens using Tetracycline-Inducible Expression System (Tetracycline-Inducible Expression System을 이용한 Human Thrombopoietin (hTPO) 형질전환 닭의 생산)

  • Kwon, M.S.;Koo, B.C.;Kim, D.H.;Kim, M.J.;Kim, T.
    • Korean Journal of Poultry Science
    • /
    • v.36 no.2
    • /
    • pp.177-186
    • /
    • 2009
  • It is well-known that unregulated over-expression of foreign gene may have unwanted physiological or toxic effects in transgenic animals. To circumvent these problems, we constructed retrovirus vector designed to express the foreign gene under the control of the tetracycline-inducible promoter. However, gene expressions in the tetracycline-inducible expression system (Tet system) are not completely regulated but a little leaky due to the inherent defects in conventional Tet-based systems. A more tightly controllable regulatory system can be achieved when the advanced versions ($rtTA2^SM2$) of rtTA and a minimal promoter in responsive components (pTRE-tight) are used in combination therein. In this study, we tried to produce human thrombopoietin (hTPO) from various target cells and transgenic chickens using the retrovirus vector combined with Tet system. hTPO is the primary regulator of platelet production and has an important role in the survival and expansion of hematopoietic stem cells. In a preliminary experiment in vitro, higher hTPO expression and tighter expression control were observed in chicken embryonic fibroblast (CEF) cells. We also measured the biological activity of the hTPO using Mo7e cells whose proliferation is dependant on hTPO. The biological activity of the recombinant hTPO from CEF was higher than both its commercial counterpart and hTPO from other target cells. The recombinant retrovirus was injected beneath the blastoderm of non-incubated chicken embryos (stage X). Out of 138 injected eggs, 15 chicks hatched after 21 days of incubation. Among them, 8 hatched chicks were hTPO positive. When the Go transgenic chicken was fed doxycycline (0.5 mg per 1 gram of feed), a tetracycline derivative, hTPO concentration of the transgenic chicken blood was 200 ng/mL. Germline transmission of the transgene was confirmed in sperm of the Go transgenic roosters. These results are informative to establish transgenic chickens as bioreactors for the mass production of commercially valuable and biological active human cytokine proteins.

Knocking-in of the Human Thrombopoietin Gene on Beta-casein Locus in Bovine Fibroblasts

  • Chang, Mira;Lee, Jeong-Woong;Koo, Deog-Bon;Shin, Sang Tae;Han, Yong-Mahn
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.6
    • /
    • pp.806-813
    • /
    • 2010
  • Animal bioreactors have been regarded as alternative tools for the production of limited human therapeutic proteins. The mammary glands of cattle are optimal tissues to produce therapeutic proteins that cannot be produced in large amounts in traditional systems based on microorganisms and eukaryotic cells. In this study, two knock-in vectors, pBCTPOKI-6 and pBCTPOKI-10, which target the hTPO gene on the bovine beta-casein locus, were designed to develop cloned transgenic cattle. The pBCTPOKI-6 and pBCTPOKI-10 vectors expressed hTPO protein in culture medium at a concentration of 774 pg/ml and 1,867 pg/ml, respectively. Successfully, two targeted cell clones were obtained from the bovine fibroblasts transfected with the pBCTPOKI-6 vector. Cloned embryos reconstructed with the targeted nuclei showed a lower in vitro developmental competence than those with the wild-type nuclei. After transfer of the cloned embryos into recipients, 7 pregnancies were detected at 40 to 60 days of gestation, but failed to develop to term. The results are the first trial for targeting of a human gene on the bovine milk protein gene locus, providing the potential for a large-scale production of therapeutic proteins in the animal bioreactor system.

Studies on Developing Direct Gene Transfer Based on Naked Plasmid DNA for Treating Anemia (Naked Plasmid DNA를 이용한 빈혈 치료용 Direct Gene Transfer 시스템의 개발에 대한 연구)

  • Park Young Seoub;Jung Dong Gun;Choi Cha Yong
    • KSBB Journal
    • /
    • v.19 no.5
    • /
    • pp.341-347
    • /
    • 2004
  • Several gene delivery therapies are being developed for treatment of serum protein deficiency. EPO is one of the most promising therapeutic agent for this treatment which is currently being investigated in depth. This study has the ultimate purpose of improving the gene delivery system for an increase of red blood cell production. A plasmid DNA was constructed smaller than other plasmids for an increase in penetration into animal cells, and two genes were cloned into each vector as a co-delivery system to express erythropoietin, and interluekin-3 or thrombopoietin, which can act on erythroid cell, thus activating hematopoiesis synergically. This co-delivery system has an advantage of decreasing the labour required for industrial production of DNA vaccine. A new plasmid vector, pVAC, in size 2.9 kb, was constructed with the essential parts from PUC 19 and pSectagB, which is much smaller than other plasmid vector and is the size of 2.9 kb. Co-delivery system was constituted by cloning human erythropoietin with each of human interluekin-3 gene or human thrombopoietin gene into both pVAC and pSectagB. As a result, the transfection efficiency of pVAC was higer than that of pSectagB in vitro, and hematocrit level of the mice injected with pVAC is higher than that of other mice. And co-delivery system, made of several plasmid DNAs, was expressed in vitro.

Construction of Retrovirus Vector System for the Regulation of Recombinant hTPO Gene Expression (재조합 hTPO 유전자의 발현 조절을 위한 Retrovirus Vector System의 구축)

  • Kwon, Mo-Sun;Koo, Bon-Chul;Kim, Do-Hyang;Kim, Te-Oan
    • Reproductive and Developmental Biology
    • /
    • v.31 no.3
    • /
    • pp.161-167
    • /
    • 2007
  • In this study, we constructed and tested retrovirus vectors designed to express the human thrombopoietin gene under the control of the tetracycline-inducible promoters. To increase the hTPO gene expression at him-on state, WPRE sequence was also introduced into retrovirus vector at downstream region of either the hTPO gene or the sequence encoding reverse tetracycline-controlled transactivator (rtTA). Primary culture cells (PFF, porcine fetal fibroblast; CEF, chicken embryonic fibroblast) infected with the recombinant retrovirus were cultured in the medium supplemented with or without doxycycline for 48hr, and induction efficiency was measured by comparing the hTPO gene expression level using RT-PCR, western blot and ELISA. Higher hPTO expression and tighter expression control were observed from the vector in which the WPRE sequence was placed at downstream of the hTPO (in CEF) or rtTA(in PFF) gene. This resulting tetracycline inducible vector system may be helpful in solving serious physiological disturbance problems which have been a major obstacle in successful production of transgenic animals.

Efficient Production of Cloned Bovine Embryos from Transformed Somatic Cells (형질전환 체세포로부터 소 복제수정란의 효율적인 생산)

  • Wee G.;B. H Sohn;Park, J. S.;D. B. Koo;Lee, K. K.;Y. M. Han
    • Korean Journal of Animal Reproduction
    • /
    • v.27 no.1
    • /
    • pp.25-34
    • /
    • 2003
  • Human thrombopoietin (hTPO) is a cytokine that plays a central role in megakaryopoiesis. To direct hTPO expression in the mammary gland, an expression vector was constructed by combining the promoter of bovine beta-casein gene, cDNA of hTPO and neomycin resistance gene (pBT-L neo). Fibroblast cells derived from cow's ear skin tissue were transfected with the expression vector (pBT-L neo) using Lipofectamine. Transfected cells resistant to G418 trea?nt were cultured to form the colonies for more than 2 weeks. The transformed colonies identified by PCR were further expanded prior to nuclear transfer. Reconstructed oocytes with transformed cells were electrofused, activated using calcium ionophore and 6-DMAP, and cultured in vitro for 7 days. Of 35 cell colonies analyzed by PCR, 29 colonies (82.9%) were positive for the hTPO gene. Cleavage and developmental rates to the blastocyst stage of reconstructed embryos with the transformed cells were 65.1% and 23.8%, respectively Of 29 blastocysts that developed from reconstructed embryos with the transformed cells, 27 embryos (93.1%) were transgenic. These results indicate that transgenic bovine embryos can be efficiently produced by somatic cell nuclear transfer using transformed cells.

Human Erythropoietin Induces Lung Failure and Erythrocytosis in Transgenic Mice

  • Kim, Myoung Ok;Kim, Sung Hyun;Shin, Mi Jung;Lee, Dong Beom;Kim, Tae Won;Kim, Kil Soo;Ha, Ji Hong;Lee, Sanggyu;Park, Yong Bok;Kim, Sun Jung;Ryoo, Zae Young
    • Molecules and Cells
    • /
    • v.23 no.1
    • /
    • pp.17-22
    • /
    • 2007
  • We have expressed human erythropoietin (EPO) in transgenic mice using a recombinant EPO cDNA combined with a partial TPO construct. The gene was microinjected using standard techniques and five mice were detected as transgenic by PCR and further used as founders. The life span of the transgenic founders was much shorter than that of their normal littermates. Most of the tissues of the transgenic founders contained human EPO transcripts as judged by RT-PCR. Especially high expression levels were seen in the liver and lung. EPO protein levels in serum were examined by ELISA and ranged from 266-414 mIU/ml. The number of red blood cell, white blood cell and hemoglobin in the hEPO transgenic mice was higher than in normal mice. These results indicate that overexpression of hEPO is deleterious and can provoke lung failure and erythrocytosis.