• Title/Summary/Keyword: Human System Interfaces

Search Result 142, Processing Time 0.026 seconds

Trends in Deep Learning Inference Engines for Embedded Systems (임베디드 시스템용 딥러닝 추론엔진 기술 동향)

  • Yoo, Seung-mok;Lee, Kyung Hee;Park, Jaebok;Yoon, Seok Jin;Cho, Changsik;Jung, Yung Joon;Cho, Il Yeon
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.4
    • /
    • pp.23-31
    • /
    • 2019
  • Deep learning is a hot topic in both academic and industrial fields. Deep learning applications can be categorized into two areas. The first category involves applications such as Google Alpha Go using interfaces with human operators to run complicated inference engines in high-performance servers. The second category includes embedded applications for mobile Internet-of-Things devices, automotive vehicles, etc. Owing to the characteristics of the deployment environment, applications in the second category should be bounded by certain H/W and S/W restrictions depending on their running environment. For example, image recognition in an autonomous vehicle requires low latency, while that on a mobile device requires low power consumption. In this paper, we describe issues faced by embedded applications and review popular inference engines. We also introduce a project that is being development to satisfy the H/W and S/W requirements.

Study on the Take-over Performance of Level 3 Autonomous Vehicles Based on Subjective Driving Tendency Questionnaires and Machine Learning Methods

  • Hyunsuk Kim;Woojin Kim;Jungsook Kim;Seung-Jun Lee;Daesub Yoon;Oh-Cheon Kwon;Cheong Hee Park
    • ETRI Journal
    • /
    • v.45 no.1
    • /
    • pp.75-92
    • /
    • 2023
  • Level 3 autonomous vehicles require conditional autonomous driving in which autonomous and manual driving are alternately performed; whether the driver can resume manual driving within a limited time should be examined. This study investigates whether the demographics and subjective driving tendencies of drivers affect the take-over performance. We measured and analyzed the reengagement and stabilization time after a take-over request from the autonomous driving system to manual driving using a vehicle simulator that supports the driver's take-over mechanism. We discovered that the driver's reengagement and stabilization time correlated with the speeding and wild driving tendency as well as driving workload questionnaires. To verify the efficiency of subjective questionnaire information, we tested whether the driver with slow or fast reengagement and stabilization time can be detected based on machine learning techniques and obtained results. We expect to apply these results to training programs for autonomous vehicles' users and personalized human-vehicle interfaces for future autonomous vehicles.

PC-based Hand-Geometry Verification System

  • Kim Young-Tak;Kim Soo-Jong;Lee Chang-Gyu;Kim Gwan-Hyung;Kang Sung-In;Lee Jae-Hyun;Tack Han-Ho;Lee Sang-Bae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.3
    • /
    • pp.247-254
    • /
    • 2006
  • Biometrics are getting more and more attention in recent years for security and other concerns. So far, only fingerprint recognition has seen limited success for on-line security check, since other biometrics verification and identification systems require more complicated and expensive acquisition interfaces and recognition processes. Hand-Geometry can be used for biometric verification and identification because of its acquisition convenience and good performance for verification and identification performance. It could also be a good candidate for online checks. Therefore, this paper proposes a Hand-Geometry recognition system based on geometrical features of hand. From anatomical point of view, human hand can be characterized by its length, width, thickness, geometrical composition, shapes of the palm, and shape and geometry of the fingers. This paper proposes thirty relevant features for a Hand-Geometry recognition system. This system presents verification results based on hand measurements of 20 individuals. The verification process has been tested on a size of $320{\times}240$ image, and result of the verification process have hit rate of 95% and FAR of 0.020.

Applications of haptic feedbacks in medicine (의료분야에서의 햅틱 피드백 응용)

  • Quy, Pham Sy;Seo, An-Na;Kim, Hyung-Seok;Kim, Jee-In
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.203-213
    • /
    • 2009
  • Medicine is one of great application fields where Virtual Reality (VR) technologies have been successfully utilized. The VR technologies in medicine bring together an interdisciplinary community of computer scientists and engineers, physicians and surgeon, medical educator and students, military medical specialists, and biomedical futurists. The primary feedback of a VR system has been visual feedback. The complex geometry for graphic objects and utilizing hardware acceleration can be incorporated with in order to produce realistic virtual environments. To enhance human-computer interaction (HCI), in term of immersive experiences perceived by users, haptic, speech, olfactory and other non-traditional interfaces should also be exploited. Among those, hapic feedback has been tightly coupled with visual feedback. The combination of the two sensory feedbacks can give users more immersive, realistic and perceptive VR environments. Haptic feedback has been studied over decades and many haptic based VR systems have been developed. This paper focuses on haptic feedback in term of its medical usages. It presents a survey of haptic feedback techniques with their applications in medicine.

  • PDF

Reinterpretation of Behavior for Non-compliance with Procedures : Focusing on the Events at a Domestic Nuclear Power Plants (절차 미준수 행동의 재해석 : 국내 원전 사건을 중심으로)

  • Dong Jin Kim
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.1
    • /
    • pp.82-95
    • /
    • 2024
  • Analyzing the aftermath of events at domestic nuclear power plants brings in the question: "Why do workers not comply with the prescribed procedures?" The current investigation of nuclear power plant events identifies their reasons considering the factors affecting the workers' behaviors. However, there are some complications to it: in addition to confirming the action such as an error or a violation, there is a limit to identifying the intention of the actor. To overcome this limitation, the study analyzed and examined the reasons for non-compliance identified in nuclear power plant events by Reason's rule-related behavior classification. For behavior analysis, I selected unit behaviors for events that are related to human and organizational factors and occurred at domestic nuclear power plants since 2017, and then I applied the rule-related behavior classification introduced by Reason (2008). This allowed me to identify the intentions by classifying unit behaviors according to quality and compliance with the rules. I also identified the factors that influenced unit behaviors. The analysis showed that most often, non-compliance only pursued personal goals and was based on inadequate risk appraisal. On the other hand, the analysis identified cases where it was caused by such factors as poorly written procedures or human system interfaces. Therefore, the probability of non-compliance can be reduced if these factors are properly addressed. Unlike event investigation techniques that struggle to identify the reasons for employee behavior, this study provides a new interpretation of non-compliance in nuclear power plant events by examining workers' intentions based on the concept of rule-related behavior classification.

A Study on the Extraction of Nail's Region from PC-based Hand-Geometry Recognition System Using GA (GA를 이용한 PC 기반 Hand-Geometry 인식시스템의 Nail 영역 추출에 관한 연구)

  • Kim, Young-Tak;Kim, Soo-Jong;Park, Ju-Won;Lee, Sang-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.506-511
    • /
    • 2004
  • Biometrics is getting more and more attention in recent years for security and other concerns. So far, only fingerprint recognition has seen limited success for on-line security check, since other biometrics verification and identification systems require more complicated and expensive acquisition interfaces and recognition processes. Hand-Geometry has been used for biometric verification and identification because of its acquisition convenience and good performance for verification and identification performance. Hence, it can be a good candidate for online checks. Therefore, this paper proposes a Hand-Geometry recognition system based on geometrical features of hand. From anatomical point of view, human hand can be characterized by its length, width, thickness, geometrical composition, shapes of the palm, and shape and geometry of the fingers. This paper proposes thirty relevant features for a Hand-Geometry recognition system. However, during experimentation, it was discovered that length measured from the tip of the finger was not a reliable feature. Hence, we propose a new technique based on Genetic Algorithm for extraction of the center of nail bottom, in order to use it for the length feature.

Study for Operation Teaching Machine Using 3D Virtual Reality System (3D가상 현실방식을 사용한 수술교육시스템의 연구)

  • Kang, Byung-Hoon;Kim, Ji-Sook;Kim, Han-Woong
    • Journal of Digital Contents Society
    • /
    • v.17 no.4
    • /
    • pp.287-293
    • /
    • 2016
  • Some studies require sufficient amount of time, spaces, and financial condition for practical exercises and training. In particular for the Medical education, time and space limitation is very high and difficulties occurs, since the practices are done with cadavers (deceased human body). Many alternate 3D Virtual surgery training system exist currently, however the burdensome of obtaining those costly equipments is problematic. Providing the surgical environment as similar to real as possible using 3D Virtual Reality can be a solution to current problems. The effectiveness of training could be maximized with minimized costs without the general interfaces such as keyboard and mouse, but with Oculus Rift and Leap Motion. This paper will develop and practice the 3D Virtual Operation System with two devices to investigate the possibility and expand to other Simulation fields.

A Study on the Development of Backlight Surface Defect Inspection System using Computer Vision (컴퓨터비젼을 이용한 백라이트 표면결함 검사시스템 개발에 관한 연구)

  • Cho, Young-Chang;Choi, Byung-Jin;Yoon, Jeong-Oh
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.3
    • /
    • pp.116-123
    • /
    • 2007
  • Despite the number of backlight manufacturer is increased as the market of flat panel display equipments and related development devices is enlarged, the inspection based on the human eye is still used in many backlight production lines. The defects such as particle, spot and scratch on the light emitting surface of the backlight prevent the LCD device from displaying the colors correctly. From that manual inspection it is difficult to maintain the quality of backlight consistently because the accuracy and the speed of the inspection may change with the physical condition of the operater. In this paper we studied on the development of automatic backlight surface defect inspection system. For this, we made up of the computer vision system and we developed the main program with various user interfaces to operate the inspection system effectively. And we developed the image processing module to extract the defect information. Furthermore, we presented the labeling process to reconstruct defect regions using the labeling table and the defect index. From the experimental results, we found that our system can detect all defect regions identified from human eye and it is sufficient to substitute for the conventional surface inspection.

  • PDF

Fault Tolerant Design of Universal Soft Controller for Advanced Power Reactor (신형원전(APR+)을 위한 범용소프트제어기의 내고장성 설계)

  • Ye, Song-Hae;Lyou, Joon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.279-286
    • /
    • 2012
  • Recently, design of Universal Soft Controller(USC) has been applied to the advanced control room for nuclear power plant. USC is software-based manual control means to control safety components as well as non-safety components in the highly-integrated control room. Therefore, design feature of USC is essential for the implementation of a single workstation in the advanced control room. The traditional control room is replaced by computer-driven consolidated operator interfaces. Considering our design has further reduced the probability of USC spurious signals by requiring two distinct operator control actions to generate any control signal. The reality of USC does not increase the probability of reactor trip because the probability of spurious USC signal is negligible. Universal Soft Control represents a significant evolution in nuclear I&C/HSI System. USC integrates the indicators and controls from multiple divisions into a single integrated visual display unit(VDU) based HSI(Human System Interface). In order to prevent adverse influence on safety function performance from USC failure, ESFAS signals are applied to safety components or functions. In addition, safety manual switches have priority over USC's signals. Therefore, spurious USC signals can be momentarily blocked by selecting a soft control command from the safety VDU.

The effect of the human voice that is consistent with context and the mechanical melody on user's subjective experience in mobile phones (휴대전화 상황에서 맥락과 일치하는 사람음과 단순 기계음이 사용자의 주관적 경험에 미치는 영향)

  • Cho, Yu-Suk;Eom, Ki-Min;Joo, Hyo-Min;Suk, Ji-He;Han, Kwang-Hee
    • Science of Emotion and Sensibility
    • /
    • v.12 no.4
    • /
    • pp.531-544
    • /
    • 2009
  • In the past, objective usability was one of the most important aspects when user used system. But nowadays user's subjective experiences are getting more critical element than objective usability in HCI(human-computer interaction). Most people own their mobile phone and use it frequently these days. It is especially important to make user's subjective experiences more positive when using devices like mobile phones people frequently carry and interact with. This study investigates whether the interfaces which express the emotion give more positive experiences to users. Researchers created mobile phone prototypes to compare the effect of mechanical melody feedback(the major auditory feedbacks on mobile phones) and emotional voice feedback(recorded human voice). Participants experienced four kinds of mobile phone prototypes(no feedback, mechanical melody feedback, emotional voice feedback and dual feedback) and evaluated their experienced usability, hedonic quality and preference. The result suggests that person's perceptional fun and hedonic quality were getting increased in the phone which gave the emotional voice feedback than the mechanical melody feedback. Nevertheless, the preference was evaluated lower in the emotional voice feedback condition than the others.

  • PDF