• Title/Summary/Keyword: Human Similarity

Search Result 555, Processing Time 0.023 seconds

Assessment of performance of machine learning based similarities calculated for different English translations of Holy Quran

  • Al Ghamdi, Norah Mohammad;Khan, Muhammad Badruddin
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.111-118
    • /
    • 2022
  • This research article presents the work that is related to the application of different machine learning based similarity techniques on religious text for identifying similarities and differences among its various translations. The dataset includes 10 different English translations of verses (Arabic: Ayah) of two Surahs (chapters) namely, Al-Humazah and An-Nasr. The quantitative similarity values for different translations for the same verse were calculated by using the cosine similarity and semantic similarity. The corpus went through two series of experiments: before pre-processing and after pre-processing. In order to determine the performance of machine learning based similarities, human annotated similarities between translations of two Surahs (chapters) namely Al-Humazah and An-Nasr were recorded to construct the ground truth. The average difference between the human annotated similarity and the cosine similarity for Surah (chapter) Al-Humazah was found to be 1.38 per verse (ayah) per pair of translation. After pre-processing, the average difference increased to 2.24. Moreover, the average difference between human annotated similarity and semantic similarity for Surah (chapter) Al-Humazah was found to be 0.09 per verse (Ayah) per pair of translation. After pre-processing, it increased to 0.78. For the Surah (chapter) An-Nasr, before preprocessing, the average difference between human annotated similarity and cosine similarity was found to be 1.93 per verse (Ayah), per pair of translation. And. After pre-processing, the average difference further increased to 2.47. The average difference between the human annotated similarity and the semantic similarity for Surah An-Nasr before preprocessing was found to be 0.93 and after pre-processing, it was reduced to 0.87 per verse (ayah) per pair of translation. The results showed that as expected, the semantic similarity was proven to be better measurement indicator for calculation of the word meaning.

Development of a New Similarity Index to Compare Time-series Profile Data for Animal and Human Experiments (동물 및 임상 시험의 시계열 프로파일 데이터 비교를 위한 유사성 지수 개발)

  • Lee, Ye Gyoung;Lee, Hyun Jeong;Jang, Hyeon Ae;Shin, Sangmun
    • Journal of Korean Society for Quality Management
    • /
    • v.49 no.2
    • /
    • pp.145-159
    • /
    • 2021
  • Purpose: A statistical similarity evaluation to compare pharmacokinetics(PK) profile data between nonclinical and clinical experiments has become a significant issue on many drug development processes. This study proposes a new similarity index by considering important parameters, such as the area under the curve(AUC) and the time-series profile of various PK data. Methods: In this study, a new profile similarity index(PSI) by using the concept of a process capability index(Cp) is proposed in order to investigate the most similar animal PK profile compared to the target(i.e., Human PK profile). The proposed PSI can be calculated geometric and arithmetic means of all short term similarity indices at all time points on time-series both animal and human PK data. Designed simulation approaches are demonstrated for a verification purpose. Results: Two different simulation studies are conducted by considering three variances(i.e., small, medium, and large variances) as well as three different characteristic types(smaller the better, larger the better, nominal the best). By using the proposed PSI, the most similar animal PK profile compare to the target human PK profile can be obtained in the simulation studies. In addition, a case study represents differentiated results compare to existing simple statistical analysis methods(i.e., root mean squared error and quality loss). Conclusion: The proposed PSI can effectively estimate the level of similarity between animal, human PK profiles. By using these PSI results, we can reduce the number of animal experiments because we only focus on the significant animal representing a high PSI value.

A Similarity Ranking Algorithm for Image Databases (이미지 데이터베이스 유사도 순위 매김 알고리즘)

  • Cha, Guang-Ho
    • Journal of KIISE:Databases
    • /
    • v.36 no.5
    • /
    • pp.366-373
    • /
    • 2009
  • In this paper, we propose a similarity search algorithm for image databases. One of the central problems regarding content-based image retrieval (CBIR) is the semantic gap between the low-level features computed automatically from images and the human interpretation of image content. Many search algorithms used in CBIR have used the Minkowski metric (or $L_p$-norm) to measure similarity between image pairs. However those functions cannot adequately capture the aspects of the characteristics of the human visual system as well as the nonlinear relationships in contextual information. Our new search algorithm tackles this problem by employing new similarity measures and ranking strategies that reflect the nonlinearity of human perception and contextual information. Our search algorithm yields superior experimental results on a real handwritten digit image database and demonstrates its effectiveness.

Korean Semantic Similarity Measures for the Vector Space Models

  • Lee, Young-In;Lee, Hyun-jung;Koo, Myoung-Wan;Cho, Sook Whan
    • Phonetics and Speech Sciences
    • /
    • v.7 no.4
    • /
    • pp.49-55
    • /
    • 2015
  • It is argued in this paper that, in determining semantic similarity, Korean words should be recategorized with a focus on the semantic relation to ontology in light of cross-linguistic morphological variations. It is proposed, in particular, that Korean semantic similarity should be measured on three tracks, human judgements track, relatedness track, and cross-part-of-speech relations track. As demonstrated in Yang et al. (2015), GloVe, the unsupervised learning machine on semantic similarity, is applicable to Korean with its performance being compared with human judgement results. Based on this compatability, it was further thought that the model's performance might most likely vary with different kinds of specific relations in different languages. An attempt was made to analyze them in terms of two major Korean-specific categories involved in their lexical and cross-POS-relations. It is concluded that languages must be analyzed by varying methods so that semantic components across languages may allow varying semantic distance in the vector space models.

Dynamic gesture recognition using a model-based temporal self-similarity and its application to taebo gesture recognition

  • Lee, Kyoung-Mi;Won, Hey-Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2824-2838
    • /
    • 2013
  • There has been a lot of attention paid recently to analyze dynamic human gestures that vary over time. Most attention to dynamic gestures concerns with spatio-temporal features, as compared to analyzing each frame of gestures separately. For accurate dynamic gesture recognition, motion feature extraction algorithms need to find representative features that uniquely identify time-varying gestures. This paper proposes a new feature-extraction algorithm using temporal self-similarity based on a hierarchical human model. Because a conventional temporal self-similarity method computes a whole movement among the continuous frames, the conventional temporal self-similarity method cannot recognize different gestures with the same amount of movement. The proposed model-based temporal self-similarity method groups body parts of a hierarchical model into several sets and calculates movements for each set. While recognition results can depend on how the sets are made, the best way to find optimal sets is to separate frequently used body parts from less-used body parts. Then, we apply a multiclass support vector machine whose optimization algorithm is based on structural support vector machines. In this paper, the effectiveness of the proposed feature extraction algorithm is demonstrated in an application for taebo gesture recognition. We show that the model-based temporal self-similarity method can overcome the shortcomings of the conventional temporal self-similarity method and the recognition results of the model-based method are superior to that of the conventional method.

The study of the relationship between the similarity of cognitive map and the mental workload (인지지도 유사도와 정신적 작업부하와의 관계에 대한 연구)

  • Yu, Seung-Dong;Park, Peom
    • Journal of the Ergonomics Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.47-58
    • /
    • 2002
  • The similarity of shape of shape of interface between human cognitive map and real product is the important factor to determine the human performance. Nevertheless, the degree of similarity between these has not been defined quantitatively in recent studies. Therefore, in this study, the cognitive map and the mental workload were measured by SMM(Sketch Map Method) and RNASA-TLX(Revision of NASA-Task Load Index). And the numerical expression of the accuracy point was suggested for the quantitative calculation of relative positional similarity between cognitive map and real product. In the experiment, nine subjects were participated and two kinds of vehicles were used. Mental workload was mental workload was measured immediately after the road test. The result of analysis on the relationship between accuracy and mental workload shows that the negative correlation exists on each vehicle, and the lower score of mental workloads id measured on the vehicle that has the higher score of accuracy between two vehicles.

Development of the Recommender System of Arabic Books Based on the Content Similarity

  • Alotaibi, Shaykhah Hajed;Khan, Muhammad Badruddin
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.8
    • /
    • pp.175-186
    • /
    • 2022
  • This research article develops an Arabic books' recommendation system, which is based on the content similarity that assists users to search for the right book and predict the appropriate and suitable books pertaining to their literary style. In fact, the system directs its users toward books, which can meet their needs from a large dataset of Information. Further, this system makes its predictions based on a set of data that is gathered from different books and converts it to vectors by using the TF-IDF system. After that, the recommendation algorithms such as the cosine similarity, the sequence matcher similarity, and the semantic similarity aggregate data to produce an efficient and effective recommendation. This approach is advantageous in recommending previously unrated books to users with unique interests. It is found to be proven from the obtained results that the results of the cosine similarity of the full content of books, the results of the sequence matcher similarity of Arabic titles of the books, and the results of the semantic similarity of English titles of the books are the best obtained results, and extremely close to the average of the result related to the human assigned/annotated similarity. Flask web application is developed with a simple interface to show the recommended Arabic books by using cosine similarity, sequence matcher similarity, and semantic similarity algorithms with all experiments that are conducted.

Measuring gameplay similarity between human and reinforcement learning artificial intelligence (사람과 강화학습 인공지능의 게임플레이 유사도 측정)

  • Heo, Min-Gu;Park, Chang-Hoon
    • Journal of Korea Game Society
    • /
    • v.20 no.6
    • /
    • pp.63-74
    • /
    • 2020
  • Recently, research on automating game tests using artificial intelligence agents instead of humans is attracting attention. This paper aims to collect play data from human and artificial intelligence and analyze their similarity as a preliminary study for game balancing automation. At this time, constraints were added at the learning stage in order to create artificial intelligence that can play similar to humans. Play datas obtained 14 people and 60 artificial intelligence by playing Flippy bird games 10 times each. The collected datas compared and analyzed for movement trajectory, action position, and dead position using the cosine similarity method. As a result of the analysis, an artificial intelligence agent with a similarity of 0.9 or more with humans was found.

A Quantification Method of Human Body Motion Similarity using Dynamic Time Warping for Keypoints Extracted from Video Streams (동영상에서 추출한 키포인트 정보의 동적 시간워핑(DTW)을 이용한 인체 동작 유사도의 정량화 기법)

  • Im, June-Seok;Kim, Jin-Heon
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1109-1116
    • /
    • 2020
  • The matching score evaluating human copying ability can be a good measure to check children's developmental stages, or sports movements like golf swing and dance, etc. It also can be used as HCI for AR, VR applications. This paper presents a method to evaluate the motion similarity between demonstrator who initiates movement and participant who follows the demonstrator action. We present a quantification method of the similarity which utilizes Euclidean L2 distance of Openpose keypoins vector similarity. The proposed method adapts DTW, thus can flexibly cope with the time delayed motions.

An Artificial Intelligence Approach for Word Semantic Similarity Measure of Hindi Language

  • Younas, Farah;Nadir, Jumana;Usman, Muhammad;Khan, Muhammad Attique;Khan, Sajid Ali;Kadry, Seifedine;Nam, Yunyoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2049-2068
    • /
    • 2021
  • AI combined with NLP techniques has promoted the use of Virtual Assistants and have made people rely on them for many diverse uses. Conversational Agents are the most promising technique that assists computer users through their operation. An important challenge in developing Conversational Agents globally is transferring the groundbreaking expertise obtained in English to other languages. AI is making it possible to transfer this learning. There is a dire need to develop systems that understand secular languages. One such difficult language is Hindi, which is the fourth most spoken language in the world. Semantic similarity is an important part of Natural Language Processing, which involves applications such as ontology learning and information extraction, for developing conversational agents. Most of the research is concentrated on English and other European languages. This paper presents a Corpus-based word semantic similarity measure for Hindi. An experiment involving the translation of the English benchmark dataset to Hindi is performed, investigating the incorporation of the corpus, with human and machine similarity ratings. A significant correlation to the human intuition and the algorithm ratings has been calculated for analyzing the accuracy of the proposed similarity measures. The method can be adapted in various applications of word semantic similarity or module for any other language.