• Title/Summary/Keyword: Human Modeling

Search Result 1,370, Processing Time 0.026 seconds

A Geomorphological Classification System to Chatacterize Ecological Processes over the Landscape (생태환경 특성 파악을 위한 지형분류기법의 개발)

  • Park Soo-Jin
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.4
    • /
    • pp.495-513
    • /
    • 2004
  • The shape of land surface work as a cradle for various environmental processes and human activities. As spatially distributed process modelings become increasing important in current research communities, a classification system that delineates land surface into characteristic geomorphological units is a pre-requisite for sustainable land use planning and management. Existing classification systems are either morphometric or generic, which have limitations to characterize continuous ecological processes over the landscape. A new classification system was developed to delineate the land surface into different geomorphological units from Digital Elevation Models(DEMs). This model assumes that there are pedo-geomorphological units in which distinct sets of hydrological, pedological, and consequent ecological processes occur. The classification system first divides the whole landsurface into eight soil-landscape units. Possible energy and material nows over the land surface were interpreted using a continuity equation of mass flow along the hillslope, and subsequently implemented in terrain analysis procedures. The developed models were tested at a 12$\textrm{km}^2$ area in Yangpyeong-gun, Kyeongi-do, Korea. The method proposed effectively delineates land surface into distinct pedo-geomorphological units, which identify the geomorphological characteristics over a large area at a low cost. The delineated landscape units mal provide a basic information for natural resource survey and environmental modeling practices.

Behavioral motivation-based Action Selection Mechanism with Bayesian Affordance Models (베이지안 행동유발성 모델을 이용한 행동동기 기반 행동 선택 메커니즘)

  • Lee, Sang-Hyoung;Suh, Il-Hong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.4
    • /
    • pp.7-16
    • /
    • 2009
  • A robot must be able to generate various skills to achieve given tasks intelligently and reasonably. The robot must first learn affordances to generate the skills. An affordance is defined as qualities of objects or environments that induce actions. Affordances can be usefully used to generate skills. Most tasks require sequential and goal-oriented behaviors. However, it is usually difficult to accomplish such tasks with affordances alone. To accomplish such tasks, a skill is constructed with an affordance and a soft behavioral motivation switch for reflecting goal-oriented elements. A skill calculates a behavioral motivation as a combination of both presently perceived information and goal-oriented elements. Here, a behavioral motivation is the internal condition that activates a goal-oriented behavior. In addition, a robot must be able to execute sequential behaviors. We construct skill networks by using generated skills that make action selection feasible to accomplish a task. A robot can select sequential and a goal-oriented behaviors using the skill network. For this, we will first propose a method for modeling and learning Bayesian networks that are used to generate affordances. To select sequential and goal-oriented behaviors, we construct skills using affordances and soft behavioral motivation switches. We also propose a method to generate the skill networks using the skills to execute given tasks. Finally, we will propose action-selection-mechanism to select sequential and goal-oriented behaviors using the skill network. To demonstrate the validity of our proposed methods, "Searching-for-a-target-object", "Approaching-a-target-object", "Sniffing-a-target-object", and "Kicking-a-target-object" affordances have been learned with GENIBO (pet robot) based on the human teaching method. Some experiments have also been performed with GENIBO using the skills and the skill networks.

Study on the Business Process Modeling scheme using the Context Analysis methodology (상황 분석 방법론을 적용한 효율적 비즈니스 프로세스 모델링 방안에 관한 연구)

  • You, Chi-Hyung;Sang, Sung-Kyung;Kim, Jung-Jae;Na, Won-Shik
    • Journal of Digital Contents Society
    • /
    • v.9 no.4
    • /
    • pp.661-667
    • /
    • 2008
  • The dynamics of business cycles has been changed by the macroscopic economic forces because of the introduction of new technical know-how each year. These the dynamics of business has a significant influence on the investment of enterprise in the information communication field. Today, the most important goal of the IT investment is simply not to lower the production cost any more, but to improve the usefulness for the customers and partners in order to obtain the optimized mass products. Therefore, the enterprises have been concentrating their all abilities on the automation, integration, and optimization of business process using BPM. In addition, they are concentrating their efforts on the business expansion by approaching the technical aspect using RFID application system. However, in order to accomplish a successful enterprise ability, the technical view, business process view, and organization view must be considered together. We suggested the method considering organization view, via the technical element, i.e., RFID system for approaching the business process. Furthermore, we tried the optimization of assignment using Context Analysis methodology and proposed the method to reduce the element with respect to the time, human, and expense by applying the Case Study method that minimizes the iteration times through the transmitted processing procedure and type. The proposed method gave us the expectation that it will bring out the innovative improvement with respect to the time, expense, quality, and customer's satisfaction in the process from the analysis of business process to the analysis and design of system.

  • PDF

Measurement of Joint-Orientation and Monitoring of Displacement in Tunnel using 3D Laser Scanning System (3차원 레이저 스캐닝 시스템을 이용한 불연속면의 방향성 측정과 터널 변위 모니터링)

  • Shon, Ho-Woong;Oh, Seok-Hoon;Kim, Young-Kyung
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.1
    • /
    • pp.47-62
    • /
    • 2006
  • More than 70% of Korean Peninsula is consisted of mountains, so that lots of roads, rail-roads and tunnel,which play a pivotal role in the industry activity, are existed along the rock-slope and in the rock-mass. Thus,it is urgent that tegration of management system through the optimum survey and design of rock-slope excavation, proper stabilization method and database of rock-slope. However, conventional methods have shortcoming with the economy of survey time and human resources, and the overcome of difficulties of approach to the in-situ rock-slope. To overcome the limitation of conventional method, this paper proposed the development of remote measurement system using Terrestrial Laser Scanning System. The method using Terrestrial 3D Laser Scanning System, which can get 3D spatial information on the rock-slope and2)Dept. Geosystem Engineering, Kangwon National University, Korea tunnel, has an advantage of reduction of measurement time and the overcome of difficulties of approach to the in-situ rock-slope/dam/tunnel. In the case of rock-slope, through the analysis of 3D modeling of point-cloud by Terrestrial Laser Scanning System, orientation of discontinuity, roughness of joint surface, failure shape and volume were successively achieved. in the case of tunnel face, through reverse-engineering, monitoring of displacement was possible.

  • PDF

Predicting the Suitable Habitat of Amaranthus viridis Based on Climate Change Scenarios by MaxEnt (MaxEnt를 활용한 청비름(Amaranthus viridis)의 기후변화 시나리오에 의한 서식지 분포 변화 예측)

  • Lee, Yong Ho;Hong, Sun Hee;Na, Chae Sun;Sohn, Soo In;Kim, Myung Hyun;Kim, Chang Seok;Oh, Young-Ju
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.4
    • /
    • pp.240-245
    • /
    • 2016
  • This study was conducted to predict the changes of potential distribution for invasive alien plant, Amaranthus viridis in Korea. The habitats of A. viridis were roadside, bare ground, farm area, and pasture, where the interference by human was severe. We used maximum entropy modeling (MaxEnt) for analyzing the environmental influences on A. viridis distribution and projecting on two different representative concentration pathways (RCP) scenarios, RCP 4.5 and RCP 8.5. The results of our study indicated annual mean temperature, elevation and precipitation of coldest month had higher contribution for A. viridis potential distribution. Projected potential distribution of A. viridis will be increased by 110% on RCP 4.5, 470% on RCP 8.5.

Sensibility Image and Preference Analysis of Street Tree Species using 3D Simulation - Focused on Tongdaeguro in Daegu Metropolitan City - (3차원 시뮬레이션을 활용한 가로수종별 이미지 및 선호도 분석 - 대구광역시 동대구로를 대상으로 -)

  • Jung, Sung-Gwan;Shin, Jae-Yun;Kum, Kyung-Tae;Choi, Chul-Hyun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.6
    • /
    • pp.47-59
    • /
    • 2012
  • In this study, species and seasonal scenery image were made using 3D simulation modeling to evaluate emotional image of street trees in the roads cape. Study site are set in Tongdaeguro, located in Daegu Metropolitan City and Cedrus deodara, Metasequoia glyptostroboides, Liriodendron tulipifera L., and Zelkova serrata were selected to evaluate the species. In the survey result, it appears that Zelkova serrata is the highest preference for summer landscape and Metasequoia glyptostroboides is the highest preference for fall and winter landscape. With regard to the factor analysis, in order to derive emotional evaluation factor, aesthetic factor, perception factor, individuality factor, natural factor, and spatial factor were derived and aesthetic factor is the greatest impact for preference common in all seasons. Preference and positive emotional image of Metasequoia glyptostroboides is evaluated as the highest in the winter and the aesthetic factor score reduction is less than the other species. This study will be used in offering objective data and landscape planning for making comfortable roads cape through the quantitative evaluation as each species and seasonal changes.

Structural Relationships among Perceived Organization Support, Work Engagement and Turnover Intention Focusing on Workers in Small and Medium Sized Companies: Conditional Direct/Indirect Effects by Participating in Work and Learning Dual System (중소기업 근로자의 조직지원인식, 업무몰입, 이직의도 간의 구조적 관계: 일학습병행 참여에 따른 조건부 직·간접 효과)

  • Kim, Woocheol;Kang, Wonseok;Jo, Hyunjeong
    • Journal of Practical Engineering Education
    • /
    • v.12 no.1
    • /
    • pp.127-144
    • /
    • 2020
  • This study aims to examine the relationship between perceived organizational support (POS), work engagement (WE), and turnover intention (TI) among employees of small and medium-sized enterprises (SMEs) characterized by whether or not to participate in the work-learning dual system (WLDS). Also, this study intends to explore the effectiveness of WLDS by examining significant differences between the two groups. To achieve the purpose of this study, we have conducted surveys between August and December in 2018. A total of 616 cases (321 cases from SMEs participating in WLDS and 295 cases from general SMEs) were finally selected and used for data analysis with structural equation modeling (SEM). Results of the study revealed that POS had a significant and positive effect on WE. Also, POS had a significant and negative effect on TI. In addition, the mediating effect of WE in the relationship between POS and TI was found to be statistically significant. Furthermore, the results revealed that the conditional indirect effect between POS and TI depending on participation in WLDS was statistically significant. However, the conditional direct effect between POS and TI due to WLDS participation was not statistically significant. Based on the results, academic and practical implications were discussed.

Fault Tolerant System Modeling based on Real-Time Object (실시간 객체 기반 결함허용 시스템 모델링)

  • Im, Hyeong-Taek;Yang, Seung-Min
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.8
    • /
    • pp.2233-2244
    • /
    • 1999
  • It is essential to guarantee high reliability of embedded real-time systems since the failure of such systems may result in large financial damage or threaten human life. Though many researches have devoted to fault tolerant mechanisms, most of them are object-level fault tolerant mechanisms that can detect errors occurred in a single object and treat the errors in object-level. As embedded real-time systems become more complex and larger, there exist faults that cannot be detected by or tolerated with object-level fault tolerance. Hence, system-level fault tolerance is needed. System-level fault tolerance examines the status of a system whether the system is normal or not by analyzing the status of objects. When an error is detected it should be capable of locating the fault and performing an appropriate recovery and reconfiguration action. In this paper, we propose RobustRTO(Robust Real-Time Object) that provides object-level fault tolerance capability and RMO(Region Monitor real-time Object) that offers system-level fault tolerance capability. Then we show how highly dependable fault tolerant systems can be modeled by RobustRTO and RMO. The model is presented based on real-time objects.

  • PDF

Development of SaaS cloud infrastructure to monitor conditions of wind turbine gearbox (풍력발전기 증속기 상태를 감시하기 위한 SaaS 클라우드 인프라 개발)

  • Lee, Gwang-Se;Choi, Jungchul;Kang, Seung-Jin;Park, Sail;Lee, Jin-jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.316-325
    • /
    • 2018
  • In this paper, to integrate distributed IT resources and manage human resource efficiently as purpose of cost reduction, infrastructure of wind turbine monitoring system have been designed and developed on the basis of SaaS cloud. This infrastructure hierarchize data according to related task and services. Softwares to monitor conditions via the infrastructure are also developed. Softwares are made up of DB design, field measurement, data transmission and monitoring programs. The infrastructure is able to monitor conditions from SCADA data and additional sensors. Total time delay from field measurement to monitoring is defined by modeling of step-wise time delay in condition monitoring algorithms. Since vibration data are acquired by measurements of high resolution, the delay is unavoidable and it is essential information for application of O&M program. Monitoring target is gearbox in wind turbine of MW-class and it is operating for 10 years, which means that accurate monitoring is essential for its efficient O&M in the future. The infrastructure is in operation to deal with the gearbox conditions with high resolution of 50 TB data capacity, annually.

Performance of NCAR Regional Climate Model in the Simulation of Indian Summer Monsoon (NCAR 지역기후모형의 인도 여름 몬순의 모사 성능)

  • Singh, Gyan Prakash;Oh, Jai-Ho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.3
    • /
    • pp.183-196
    • /
    • 2010
  • Increasing human activity due to rapid economic growth and land use change alters the patterns of the Asian monsoon, which is key to crop yields in Asia. In this study, we tested the performance of regional climate model (RegCM3) by simulating important components of Indian summer monsoon, including land-ocean contrast, low level jet (LLJ), Tibetan high and upper level Easterly Jet. Three contrasting rain years (1994: excess year, 2001: normal year, 2002: deficient year) were selected and RegCM3 was integrated at 60 km horizontal resolution from April 1 to October 1 each year. The simulated fields of circulations and precipitation were validated against the observation from the NCEP/NCAR reanalysis products and Global Precipitation Climatology Centre (GPCC), respectively. The important results of RegCM3 simulations are (a) LLJ was slightly stronger and split into two branches during excess rain year over the Arabian Sea while there was no splitting during normal and deficient rain years, (b) huge anticyclone with single cell was noted during excess rain year while weak and broken into two cells in deficient rain year, (c) the simulated spatial distribution of precipitation was comparable to the corresponding observed precipitation of GPCC over large parts of India, and (d) the sensitivity experiment using NIMBUS-7 SMMR snow data indicated that precipitation was reduced mainly over the northeast and south Peninsular India with the introduction of 0.1 m of snow over the Tibetan region in April.