• 제목/요약/키워드: Human DNA quantification kit

검색결과 3건 처리시간 0.022초

Validation of Reduced-volume Reaction in the PowerQuant® System for human DNA Quantification

  • Kim, Hyojeong;Cho, Yoonjung;Kim, Jeongyong;Lee, Ja Hyun;Kim, Hyo Sook;Kim, Eungsoo
    • 대한의생명과학회지
    • /
    • 제26권4호
    • /
    • pp.275-287
    • /
    • 2020
  • Since its introduction in the forensic field, quantitative PCR (qPCR) has played an essential role in DNA analysis. Quality of DNA should be evaluated before short tandem repeat (STR) profiling to obtain reliable results and reduce unnecessary costs. To this end, various human DNA quantification kits have been developed. Among these kits, the PowerQunat® System was designed not only to determine the total amount of human DNA and human male DNA from a forensic evidence item, but also to offer data about degradation of DNA samples. However, a crucial limitation of the PowerQunat® System is its high cost. Therefore, to minimize the cost of DNA quantification, we evaluated kit performance using a reduced volume of reagents (1/2-volume) using DNA samples of varying types and concentrations. Our results demonstrated that the low-volume method has almost comparable performance to the manufacturer's method for human DNA quantification, human male DNA quantification, and DNA degradation index. Furthermore, using a reduced volume of regents, it is possible to run 2 times more reactions per kit. We expect the proposed low-volume method to cut costs in half for laboratories dealing with large numbers of DNA samples.

Evaluation of DNA Extraction Methods from Low Copy Number (LCN) DNA Samples for Forensic DNA Typing

  • Eom, Yong-Bin
    • 대한의생명과학회지
    • /
    • 제15권3호
    • /
    • pp.229-232
    • /
    • 2009
  • DNA isolation for PCR-based short tandem repeat (STR) analysis is essential to recover high yields of amplifiable DNA from low copy number (LCN) DNA samples. There are different methods developed for DNA extraction from the small bloodstain and gloves, commonly found at crime scenes. In order to obtain STR profiles from LCN DNA samples, DNA extraction protocols, namely the automated $iPrep^{TM}$ $ChargeSwitch^{(R)}$ method, the automated $QIAcube^{TM}$ method, the automated $Maxwell^{(R)}$ 16 DNA $IQ^{TM}$ Resin method, and the manual $QIAamp^{(R)}$ DNA Micro Kit method, were evaluated. Extracted DNA was quantified by the $Quantifiler^{TM}$ Human DNA Quantification Kit and DNA profiled by $AmpFISTR^{(R)}$ $Identifiler^{(R)}$ Kit. Results were compared based on the amount of DNA obtained and the completeness of the STR profiles produced. The automated $iPrep^{TM}$ $ChargeSwitch^{(R)}$ and $QIAcube^{TM}$ methoas produced reproducible DNA of sufficient quantity and quality trom the dried blood spot. This two automated methods showed a quantity and quality comparable to those of the forensic manual standard protocols normally used in our laboratory. In our hands, the automated DNA extraction method is another obvious choice when the forensic case sample available is bloodstain. The findings of this study indicate that the manual simple modified $QIAamp^{(R)}$ DNA Micro Kit method is best method to recover high yields of amplifiable DNA from the numerous potential sources of LCN DNA samples.

  • PDF

Forensic STR Analysis of Mixed Chimerism after Allogeneic Bone Marrow Transplantation

  • Eom, Yong-Bin
    • 대한의생명과학회지
    • /
    • 제16권3호
    • /
    • pp.193-196
    • /
    • 2010
  • Multiplex PCR-based short tandem repeat (STR) analysis is considered as a good tool for monitoring bone marrow engraftment after sex-mismatched allogeneic transplantation and provides a sensitive and accurate assessment of the contribution of both donor and/or recipient cells in post-transplantation specimens. Forensic STR analysis and quantitative real time PCR are used to determine the proportion of donor versus recipient each contained within the total DNA. The STR markers were co-amplified in a single reaction by using commercial $PowerPlex^{(R)}$ 16 system and $AmpFISTR^{(R)}$ $Identifiler^{(R)}$ / $Yfiler^{(R)}$ PCR amplification kits. Separation of the PCR products and fluorescence detection were performed by ABI $PRIS^{(R)}$ 3100 Genetic Analyzer with capillary electrophoresis. The $GeneMapper^{TM}$ ID software were used for size calling and analysis of STR profiles. Extracted DNA was quantified by the $Quantifiler^{TM}$ Human DNA / Y Human Male DNA Quantification Kit The intent of this study was to analyze the ratio of donor versus recipient cells in the post-transplant peripheral blood, spleen, lung and kidney specimens. Specimens were taken from the traffic accident male victim who had been engrafted from bone marrow female donor. Blood and spleen specimens displayed female donor DNA profile. Kidney specimen showed male recipient DNA profile. Interestingly, lung tissue showed mixed profiles. The findings of this study indicate that the forensic STR analysis using fluorescence labeling PCR combined with capillary electrophoresis is quick and reliable enough to assess the ratio of donor versus recipient cells and to monitor the mixed chimeric patterns.