• 제목/요약/키워드: Human Attention

검색결과 1,547건 처리시간 0.022초

시각주의 탐색 시스템을 위한 새로운 성능 평가 기법 (A New Performance Evaluation Method for Visual Attention System)

  • 최경주
    • 한국IT서비스학회지
    • /
    • 제16권1호
    • /
    • pp.55-72
    • /
    • 2017
  • Many of the studies of visual attention that are currently underway are seeking ways to make application systems that can be used in practice, and obtained good results using not only simulated images but also real-world images. However, despite that previous studies of selective visual attention are models intended to implement the human vision, few experiments verified the models with actual humans and there is no standardized data nor standardized experimental method for actual images. Therefore, in this paper, we propose a new performance evaluation techniques necessary for evaluation of visual attention systems. We developed an evaluation method for evaluating the performance of the visual attention system through comparison with the results of the human experiments on visual attention. Human experiments on visual attention is an experiments where human beings are instinctively aware of the unconscious when images are given to humans. So it can be useful for evaluating performance of the bottom-up attention system. Also we propose a new selective attention system that guides the user to effectively detect ROI regions by using spatial and temporal features adaptively selected according to the input image. We evaluated the performance of proposed visual attention system through the developed performance evaluation method, and we could confirm that the results of the visual attention system are similar to those of the human visual attention.

Stereo Image Quality Assessment Using Visual Attention and Distortion Predictors

  • Hwang, Jae-Jeong;Wu, Hong Ren
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제5권9호
    • /
    • pp.1613-1631
    • /
    • 2011
  • Several metrics have been reported in the literature to assess stereo image quality, mostly based on visual attention or human visual sensitivity based distortion prediction with the help of disparity information, which do not consider the combined aspects of human visual processing. In this paper, visual attention and depth assisted stereo image quality assessment model (VAD-SIQAM) is devised that consists of three main components, i.e., stereo attention predictor (SAP), depth variation (DV), and stereo distortion predictor (SDP). Visual attention is modeled based on entropy and inverse contrast to detect regions or objects of interest/attention. Depth variation is fused into the attention probability to account for the amount of changed depth in distorted stereo images. Finally, the stereo distortion predictor is designed by integrating distortion probability, which is based on low-level human visual system (HVS), responses into actual attention probabilities. The results show that regions of attention are detected among the visually significant distortions in the stereo image pair. Drawbacks of human visual sensitivity based picture quality metrics are alleviated by integrating visual attention and depth information. We also show that positive correlation with ground-truth attention and depth maps are increased by up to 0.949 and 0.936 in terms of the Pearson and the Spearman correlation coefficients, respectively.

인간의 시각적 주의 능력을 이용한 컴퓨터 시각 시스템 (Computer Vision System using the mechanisms of human visual attention)

  • 최경주;이일병
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(4)
    • /
    • pp.239-242
    • /
    • 2001
  • As systems for real time computer vision are confronted with prodigious amounts of visual information, it has become a priority to locate and analyze just that information essential to the task at hand, while ignoring the vast flow of irrelevant detail. A method of achieving this is to using human visual attention mechanism. In this paper, short review of human visual attention mechanisms and some computation models of visual attention were shown. This paper can be used as the basic data for researches on development of visual attention system that can perform various complex tasks more efficiently.

  • PDF

ADD-Net: Attention Based 3D Dense Network for Action Recognition

  • Man, Qiaoyue;Cho, Young Im
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권6호
    • /
    • pp.21-28
    • /
    • 2019
  • Recent years with the development of artificial intelligence and the success of the deep model, they have been deployed in all fields of computer vision. Action recognition, as an important branch of human perception and computer vision system research, has attracted more and more attention. Action recognition is a challenging task due to the special complexity of human movement, the same movement may exist between multiple individuals. The human action exists as a continuous image frame in the video, so action recognition requires more computational power than processing static images. And the simple use of the CNN network cannot achieve the desired results. Recently, the attention model has achieved good results in computer vision and natural language processing. In particular, for video action classification, after adding the attention model, it is more effective to focus on motion features and improve performance. It intuitively explains which part the model attends to when making a particular decision, which is very helpful in real applications. In this paper, we proposed a 3D dense convolutional network based on attention mechanism(ADD-Net), recognition of human motion behavior in the video.

A New Residual Attention Network based on Attention Models for Human Action Recognition in Video

  • Kim, Jee-Hyun;Cho, Young-Im
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권1호
    • /
    • pp.55-61
    • /
    • 2020
  • 딥 러닝 기술의 발전과 컴퓨팅 파워 등의 개선으로 인해 비디오 기반 연구는 최근 많은 관심을 얻고 있다. 비디오 데이터가 이미지 데이터와 비교하여 가장 큰 차이는 비디오 데이터에는 많은 양의 시간적, 공간적 정보가 포함되어 있다는 점이다. 이처럼 비디오에 포함된 많은 양의 데이터로 인해 컴퓨터 비전 연구에 있어서 행동 인식은 중요한 연구 과제 중 하나이지만, 비디오와 같이 움직임이 있는 환경에서 인간의 행동 인식은 매우 복잡하고 도전적인 과제이다. 인간에 대한 여러 연구를 바탕으로 인공지능에서는 인간과 유사한 주의(attention)메커니즘이 효율적인 인식 모델이라는 것을 알게 되었다. 이 효율적인 모델은 이미지 정보와 복잡한 연속 비디오 정보를 처리하는 데 이상적이다. 본 논문에서는 이러한 연구배경을 기반으로, 비디오에서 인간의 행동을 효율적으로 인식하기 위해 먼저 인간의 행동에 주목한 후 비디오 행동 인식에 주의메커니즘을 도입하고자 한다. 논문의 주요내용은 두 가지 주의 메카니즘을 기반으로 컨볼루션 신경망을 이용한 새로운 3D 잔류 주의 네트워크를 제안함으로써 비디오에서 인간의 행동을 식별하고자 한다. 제안 모델의 평가 결과 최대 90.7%정도의 정확도를 보였다.

CTC Ratio Scheduling을 이용한 Joint CTC/Attention 한국어 음성인식 (Joint CTC/Attention Korean ASR with CTC Ratio Scheduling)

  • 문영기;조용래;조원익;조근식
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.37-41
    • /
    • 2020
  • 본 논문에서는 Joint CTC/Attention 모델에 CTC ratio scheduling을 이용한 end-to-end 한국어 음성인식을 연구하였다. Joint CTC/Attention은 CTC와 attention의 장점을 결합한 모델로서 attention, CTC 단일 모델보다 좋은 성능을 보여주지만, 학습이 진행될수록 CTC가 attention의 학습을 저해하는 요인이 된다. 본 논문에서는 이러한 문제를 해결하기 위해, 학습 진행에 따라 CTC의 비율(ratio)를 줄여나가는 CTC ratio scheduling 방법을 제안한다. CTC ratio scheduling를 이용하여 학습한 결과물은 기존 Joint CTC/Attention, 단일 attention 모델 대비 좋은 성능을 보여주는 것을 확인하였다.

  • PDF

Analysis of Effect by Duration of Cryotherapy in the Posterior region of Neck for College Students

  • Ji Hong Chang
    • 한국정보전자통신기술학회논문지
    • /
    • 제16권5호
    • /
    • pp.301-306
    • /
    • 2023
  • Attention is a fundamental aspect in the cognitive process of human. Cognitive system of human body requires to focus on selected information among a vast amount of information from sensory organs. It has widely studied that various environmental factors affected the level of attention; however, few researches have aimed to the effect of direct cryotherapy. In this research, level of attention was studied comparing sub-indexes of FAIR test between groups with different duration of direct cryotheapy to the back of neck. FAIR test is a evaluation tool for visual attention consisting of three sub-indexes. Selective attention, accuracy of attention, and persistence of attention can be independently analyzed by FAIR test. In the analysis of selective attention, cryotherapy for 5 to 20 minutes showed higher result than cryotherapy for 40 minutes. In the analysis of persistence of attention, cryotherapy for 5 to 15 minutes showed higher result than cryotherapy for 40 minutes. Overall, selective attention and persistence of attention turns out to be maximized between 5 to 20 minutes of cryotherapy and tends to decrease afterwards. However, accuracy of attention does not seem to be affected by the duration of cryotherapy. Correlation between selective attention and the skin temperature by cryotherapy tends to be negative supporting the findings by ANOVA and post-hoc test. Correlation between persistence of attention and the skin temperature showed similar results.

Attention Mechanism에 따른 포인터 네트워크 기반 의존 구문 분석 모델 비교 (Comparison of Pointer Network-based Dependency Parsers Depending on Attention Mechanisms)

  • 한미래;박성식;김학수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.274-277
    • /
    • 2021
  • 의존 구문 분석은 문장 내 의존소와 지배소 사이의 관계를 예측하여 문장 구조를 분석하는 자연어처리 태스크이다. 최근의 딥러닝 기반 의존 구문 분석 연구는 주로 포인터 네트워크를 사용하는 방법으로 연구되고 있다. 포인터 네트워크는 내부적으로 사용하는 attention 기법에 따라 성능이 달라질 수 있다. 따라서 본 논문에서는 포인터 네트워크 모델에 적용되는 attention 기법들을 비교 분석하고, 한국어 의존 구문 분석 모델에 가장 효과적인 attention 기법을 선별한다. KLUE 데이터 셋을 사용한 실험 결과, UAS는 biaffine attention을 사용할 때 95.14%로 가장 높은 성능을 보였으며, LAS는 multi-head attention을 사용했을 때 92.85%로 가장 높은 성능을 보였다.

  • PDF

몰입형 대형 사이니지 콘텐츠를 위한 STAGCN 기반 인간 행동 인식 시스템 (STAGCN-based Human Action Recognition System for Immersive Large-Scale Signage Content)

  • 김정호;황병선;김진욱;선준호;선영규;김진영
    • 한국인터넷방송통신학회논문지
    • /
    • 제23권6호
    • /
    • pp.89-95
    • /
    • 2023
  • 인간 행동 인식 (Human action recognition, HAR) 기술은 스포츠 분석, 인간과 로봇 간의 상호작용, 대형 사이니지 콘텐츠 등의 애플리케이션에 활용되는 핵심 기술 중 하나이다. 본 논문에서는 몰입형 대형 사이니지 콘텐츠를 위한 STAGCN (Spatial temporal attention graph convolutional network) 기반 인간 행동 인식 시스템을 제안한다. STAGCN은 attention mechanism을 통해 스켈레톤 시퀀스의 시공간적 특징에 서로 다른 가중치를 부과하여, 동작 인식에 중요한 관절 및 시점을 고려할 수 있다. NTU RGB+D 데이터셋을 사용한 실험 결과, 제안된 시스템은 기존 딥러닝 모델들에 비해 높은 분류 정확도를 달성한 것을 확인했다.

한국어 의존 구문 분석을 위한 개선된 Deep Biaffine Attention (Improved Deep Biaffine Attention for Korean Dependency Parsing)

  • 오동석;우종성;이병우;김경선
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.608-610
    • /
    • 2018
  • 한국어 의존 구문 분석(Dependency Parsing)은 문장 어절의 중심어(head)와 수식어(modifier)의 의존관계를 표현하는 자연어 분석 방법이다. 최근에는 이러한 의존 관계를 표현하기 위해 주의 집중 메커니즘(Attention Mechanism)과 LSTM(Long Short Term Memory)을 결합한 모델들이 높은 성능을 보이고 있다. 본 논문에서는 개선된 Biaffine Attention 의존 구문 분석 모델을 제안한다. 제안된 모델은 기존의 Biaffine Attention에서 의존성과 의존 관계를 결정하는 방법을 개선하였고, 한국어 의존 구문 분석을 위한 입력 열의 형태소 표상을 확장함으로써 기존의 모델보다 UAS(Unlabeled Attachment Score)가 0.15%p 더 높은 성능을 보였다.

  • PDF