• Title/Summary/Keyword: Hull wake

Search Result 82, Processing Time 0.018 seconds

A Study on Propeller Noise Localizations in a Cavitation Tunnel Using MFP (정합장 처리를 이용한 캐비테이션 터널에서의 프로펠러 소음원 위치 추적에 관한 연구)

  • Park, Cheol-Soo;Cho, Yong-Jin;Seol, Han-Shin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.5
    • /
    • pp.220-226
    • /
    • 2007
  • The two major objectives of acoustical measurements in a cavitation tunnel are measuring the noise levels generated by rotating propellers behind a hull and localizing possible noise sources in order to reduce noise levels. Propeller noise measurement experiments were performed in MOERI cavitation tunnel at December, 2006. In order to put the propeller into cavitating conditions, a wake-generating dummy body was devised. In addition, ten hydrophones are put inside a wing-shaped casing in order to minimize the unexpected flow induced self noise around hydrophone itself. After measuring both of the noises of the rotating propeller behind the dummy body and signals generated by a virtual source, respectively the data were matched field processed using the frequency incoherent Bartlett processor to localize noises on the propeller plane. In this paper, we presented the measured noise analysis and the localization results.

The Growth phase and yield difference of Kenaf(Hibiscus cannabinus L.) in reclaimed land according to the source and physical types of organic materials

  • Kang, Chan Ho;Lee, In Sok;Yoo, Young Jin;Seo, Sang Young;Choi, Kyu Hwan;Lee, Ki Kwon;Na, Young Eun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.369-369
    • /
    • 2017
  • To improve the reclaimed land soil, we put organic materials (Chopped kenaf, decomposed rice hull, rice straw, pellet type manure compost) into reclaimed land for 3,000 kg per 10a. As a result, EC of reclaimed soil was lowered by 58% ($1.2dS/m{\rightarrow}0.5$), content of soil organic material was risen from 6.7 g/kg to 16.0 (1.4 fold ${\uparrow}$), porosity of soil was elevated from 1.57 % to 1.31 (16.6% ${\downarrow}$), soil hardness was reduced from 20.2 mm to 17.9 (11.4% ${\downarrow}$) and plow layer soil was deepen from 19.8 cm to 26.8 (35% ${\uparrow}$). In the wake of physiochemical improvement of reclaimed soil, the growth phase of crops became better contrast to non-treatment. For example the plant height of Kenaf (Hibiscus cannabinus L.) cultivated in reclaimed land containing organic materials was lengthen by 18.8%. Especially, the improvment effect of pellet type manure compost and rice straw was more preferable. When the kenaf was cultivated in reclaimed land containing organic materials, the yield was become higher. The average yield of organic materials treatment was 9,218 kg/10a, and it was 2.1 times higher than non-treatment (4,368kg/10a). And the effective treatments to increase yields were pellet type manure compost (10,848 kg/10a, 148% ${\uparrow}$), rice straw (120% ${\uparrow}$) and chopped kenaf (95% ${\uparrow}$). To intensify the effect of physicochemical enhancement of reclaimed land soil and improving yields, we put into various physical types of organic materials (pellet type, liquid type, powdered type). The most effective organic materials type for enhancement of physicochemical properties (EC of reclaimed soil was lowered, content of soil organic material was risen, porosity of soil was elevated, soil hardness was reduced, plow layer soil was deepen) was pellet. And source to maintain better growth phase and get more yield were liquid and pellet types. When we used pellet type organic material, the plant height of kenaf was lengthen by 41% in comparison with non-treatment and yield was more than 122% more. And also liquid type could get more yield (by 127%) and growth phase (by 38%)

  • PDF