• 제목/요약/키워드: Hull structure survival system

검색결과 2건 처리시간 0.016초

M&S를 통한 함정의 침수상황 가시화 및 손상통제기법 연구 (A Study on the Damage Control System and Flooding Simulation of Naval Vessels Using M&S)

  • 안병권;유재문
    • 대한조선학회논문집
    • /
    • 제44권5호
    • /
    • pp.526-533
    • /
    • 2007
  • It should be primarily aimed to increase survivability consisting of susceptibility, vulnerability and recoverability of naval vessels including ship hull, armament system as well as crews from the design stage to practical operations. With this in mind, swift and efficient actions should be executed on the basis of accurate calculations for the recoverability of damaged vessels. In this paper, it is established how the damage control system of naval vessels is embodied through step-by-step processes intending to cope with various damaged situations that may possibly occur during real operations. It is validated that this system has the applicability to naval vessels through the case study of the battle ship which has been damaged during the operation.

Parametric Modeling and Shape Optimization of Offshore Structures

  • Birk, Lothar
    • International Journal of CAD/CAM
    • /
    • 제6권1호
    • /
    • pp.29-40
    • /
    • 2006
  • The paper presents an optimization system which integrates a parametric design tool, 3D diffraction-radiation analysis and hydrodynamic performance assessment based on short and long term wave statistics. Controlled by formal optimization strategies the system is able to design offshore structure hulls with superior seakeeping qualities. The parametric modeling tool enables the designer to specify the geometric characteristics of the design from displacement over principal dimensions down to local shape properties. The computer generates the hull form and passes it on to the hydrodynamic analysis, which computes response amplitude operators (RAOs) for forces and motions. Combining the RAOs with short and long-term wave statistics provides a realistic assessment of the quality of the design. The optimization algorithm changes selected shape parameters in order to minimize forces and motions, thus increasing availability and safety of the system. Constraints ensure that only feasible designs with sufficient stability in operation and survival condition are generated. As an example the optimization study of a semisubmersible is discussed. It illustrates how offshore structures can be optimized for a specific target area of operation.