• Title/Summary/Keyword: Hull structural model

Search Result 90, Processing Time 0.026 seconds

Measuring hull girder deformations on a 9300 TEU containership

  • Koning, Jos;Schiere, Marcus
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.1111-1129
    • /
    • 2014
  • A 9300 TEU container carrier was equipped in 2006 with instrumentation aimed at wave induced accelerations, and motions. In 2010 the system was extended with strain sensors to include structural loads. Section loads for vertical bending could be readily obtained but the originally intended derivation of horizontal bending and torsion from the measured strains was found to be unreliable. This paper addresses an alternative approach that was adopted in the post processing of results. In particular the concept to use acceleration sensors to capture global hull deformations along the length of the hull, and the use of a data fusion procedure to obtain section loads from combined sensor data and finite element calculations. The approach is illustrated by comparison of actually measured accelerations and local strains with values obtained from the data fusion model. It is concluded that the approach is promising but in need of further validation and development. In particular the number and shapes of the modes used may not have been sufficient to represent the true deflection and thus strain distributions along the high loaded areas.

Finite strip analysis of a box girder simulating the hull of a ship

  • Akhras, G.;Tremblay, J.P.;Graham, T.;Cheung, M.S.;Li, W.C.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.2
    • /
    • pp.225-238
    • /
    • 2003
  • In the present study, the finite strip analysis of a box girder to simulate a ship's hull model is carried out to investigate its inelastic post-buckling behavior and to predict its ultimate flexural strength. Residual stresses and initial geometrical imperfections are both considered in the combined material and geometrical nonlinear analysis. The von-Mises yield criterion and the Prandtl-Reuss flow theory of plasticity are applied in modeling the elasto-plastic behavior of material. The Newton-Raphson iterative process is also employed in the analysis to achieve convergence. The numerical results agree well with the experimental data. The effects of some material and geometrical parameters on the ultimate strength of the structure are also investigated.

A Study on the Generation of the Production Material Information of a Building Block and the Simulation of the Block Erection (선체 블록의 물량 정보 생성 및 블록 탑재 시뮬레이션에 관한 연구)

  • Lee K.Y.;Roh M.I.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.2
    • /
    • pp.115-127
    • /
    • 2006
  • At the initial design stage, the generation process of the production material information of a building block and the simulation process of the block erection, which are required to perform the production planning and scheduling, have been manually performed by using 2D drawings, data of parent ships, and design experiences. To make these processes automatic, the accurate generation method of the production material information and the convenient simulation method of the block erection using the 3D CAD model, which was generated from the initial hull structural design system early developed by us, were proposed in this study. For this, a 3D CAD model for a whole hull structure was generated first, and the block division method for dividing the 3D CAD model into several building blocks was proposed. The generation method of the production material information for calculating the weight, center of gravity, painting area, joint length, etc. of a building block was proposed as well. Moreover, the simulation method of the block erection was proposed. Finally, to evaluate the efficiency of the proposed methods for the generation of the production material information and the simulation of the block erection, these methods were applied to corresponding processes of a deadweight 300,000 ton VLCC (Very Large Crude oil Carrier). As a result, it was shown that the production material information of a building block can be accurately generated and the block erection can be conveniently simulated in the initial design stage.

Strength Analysis for PAU Seat of FPSO (FPSO 선의 PAU SEAT 강도 해석)

  • HA T.M.;Kim S.S.;SONG M.K.
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.90-96
    • /
    • 2005
  • This paper presents the results of the reliability analysis of PAU (Preliminary Assembly Unit) seat of the floating Production Storage and Off1-loading Unit (FPSO) The main aim of the analysis was to demonstrate that a sufficient safety of structural members is guaranteed against PAU loads, internal and external pressure, and hull girder moments. Topside loads for PAU design are based on owner's request. According to the seat type, topside loads are classified into maximum values of same seat type for design efficiency. Totally, 26 loading cases for each model are used for this analysis with the combination of the reactions of PAU loafing and the hull girder bending moments according to LR offshore (2). The analysis results are evaluated according to the acceptance criteria for yielding given in LR offshore and guidance note (3) and The panel buckling resistance is verified by LR offshore and SDA (4). For 900,000 bbls FPSO, the PAU support foundation analysis using 3-D F.E. model is carried out to verify the structural adequacy of PAU foundation and structure members in way of PAU. The modified structures in way of PAU support are safe against considered load cases and all stresses in way of PAU support are within design criteria.

  • PDF

A new procedure for load-shortening and -elongation data for progressive collapse method

  • Downes, Jonathan;Tayyar, Gokhan Tansel;Kvan, Illia;Choung, Joonmo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.6
    • /
    • pp.705-719
    • /
    • 2017
  • Progressive Collapse Method (PCM) has been broadly applied to predict moment-carrying capacity of a hull girder, however accuracy of PCM has not been much studied. Accuracy of PCM is known to be dependent on how Load-Shortening and -Elongation (LSE) curve of a structural units are well predicted. This paper presents a new procedure to determine LSE datum based on box girder Finite Element Analyses (FEAs) instead of using finite element model of stiffened panels. To verify reliability of FEA results, the simple box girder collapse test results are compared with FEA results of same box girders. It reveals one frame-based box girder model is sufficiently accurate in terms of ultimate strengths of the box girders. After extracting LSE data from the box girders, PCM-based moment-carrying capacities are compared with those from FEAs of the box girders. PCM results are found to be equivalent to FEAs in terms of moment-carrying capacity if accurate LSE data are secured. The new procedure is applied to well-known 1/3 scaled frigate full section. Very excellent moment-carrying capacity of frigate hull section is obtained from PCM with LSE data from box girder FEAs.

The Assessment of Structural Crashworthiness in Collision Using Double Skinned Structural Model (이중 선체 선박의 충돌 강도 해석)

  • 이경언;원석희;백점기;이제명;김철홍
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.71-76
    • /
    • 2004
  • To deal with ship collision or grounding, double hull structure has been applied to ships carrying dangerous cargoes. Studies about ability of double hull structure to absorb collision energy and determining fracture state are still under researching. In this study, commercial analysis code, LS-DYNA3D, is used to analyze collision strength of ships in various scenarios. 46K Chemical/Product Carrier is used as analysis subject ship. Study about Energy-Indentation and Force-Indentation is conducted under conditions that weight and collision velocity are changed. Results of this study are very helpful to make mechanism of collision accident clear and to supply useful information about collision strength criteria.

  • PDF

A new method for ship inner shell optimization based on parametric technique

  • Yu, Yan-Yun;Lin, Yan;Chen, Ming;Li, Kai
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.1
    • /
    • pp.142-156
    • /
    • 2015
  • A new method for ship Inner Shell optimization, which is called Parametric Inner Shell Optimization Method (PISOM), is presented in this paper in order to improve both hull performance and design efficiency of transport ship. The foundation of PISOM is the parametric Inner Shell Plate (ISP) model, which is a fully-associative model driven by dimensions. A method to create parametric ISP model is proposed, including geometric primitives, geometric constraints, geometric constraint solving etc. The standard optimization procedure of ship ISP optimization based on parametric ISP model is put forward, and an efficient optimization approach for typical transport ship is developed based on this procedure. This approach takes the section area of ISP and the other dominant parameters as variables, while all the design requirements such as propeller immersion, fore bottom wave slap, bridge visibility, longitudinal strength etc, are made constraints. The optimization objective is maximum volume of cargo oil tanker/cargo hold, and the genetic algorithm is used to solve this optimization model. This method is applied to the optimization of a product oil tanker and a bulk carrier, and it is proved to be effective, highly efficient, and engineering practical.

Excitation and Measurement Points Selection to Identify Structural Parameters for Model Tuning (모델보정을 위한 구조물 매개변수 규명시 가진점 .측정점의 선정)

  • Park, Nam-Gyu;Park, Yun-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1271-1280
    • /
    • 2000
  • A sensor placement technique to identify structural parameter was developed. Experimental results must be acquired to identify unknown dynamic characteristics of a targeting structure for the comparison between analytical model and real structure. If the experimental environment was not equipped itself properly, it can be happened that some valuable information are distorted or ill-condition can be occurred. In this work the index to determine exciting points was derived from the criterion of maximizing parameter sensitivity matrix and that to choose measurement points was from that of preserving the invariant of sensitivity matrix. This idea was applied to a compressor hull structure to verify its performance. The result shows that the selection of measurement and excitation points using suggested criteria improve the ill-conditioning problem of inverse type problems such , as model updating.

Development of LDV(Laser Doppler Velocimetry) for Measuring Three Dimensional Hull Wake of Ship Model in Large Cavitation Tunnel (대형 캐비테이션 터널 내 선박 모형의 3차원 선체 반류 계측을 위한 레이저 유속계 개발)

  • Paik, Bu-Geun;Ahn, Jong-Woo;Seol, Han-Shin;Park, Young-Ha;Kim, Ki-Sup;Cheon, Ho-Geun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.6
    • /
    • pp.515-521
    • /
    • 2017
  • Large Cavitation Tunnel (LCT) of KRISO enables us to conduct cavitation tests of the propeller attached to a ship model. As the ship model tests are done at rather high Reynolds number of 107~108, flow measurement system such as pitot tube cannot be employed because of structural safety problems in its system and difficulties in installing it within the test section. Thus, KRISO has developed new 3-D LDV system used in large test section of LCT. There are several difficulties in using 3-D LDV, which did not allow efficient operation of it. The first trouble was the calibration using the conventional pin hole. To make the focus with same laser-beam waists at the wanted position, the high spatial resolution CCD is utilized in the calibration procedure for 3-D LDV. The off-axis configuration provides two velocity components in the horizontal plane and on-axis configuration gives third velocity component in the vertical plane. The horizontal velocity components are also obtained in the coincidence mode, which prevents any misleading results in the off-axis configuration. The nominal wake of Aframax tanker model is measured by the developed 3-D LDV system. The measured hull wake showed good agreement with that obtained by CFD calculation.

Aerodynamic Design of the KARI Mid-sized Aerostat

  • Huh, Lynn;Park, Young-Min;Chang, Byeong-Hee;Lee, Yung-Gyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.43-53
    • /
    • 2006
  • Aerodynamic shape design of the Mid-sized Aerostat was performed with computational fluid dynamics. Design procedure included determination of hull volume and length, hull shape, tailfin configuration with anhedral and location, tailfin section. For aerodynamic analysis, three dimensional Navier-Stokes equations were applied with Spalart-Allmaras turbulence model. During design procedure, static moment derivatives were mainly considered for the stability of aerostat and structural limitations were also considered for practical application of the designed shape. Aerodynamic analysis of the designed aerostat was carried out and aerodynamic characteristics were compared with those of the TCOM 71m aerostat, one of the most successful commercial aerostats. It was found that the designed KARI Mid-sized Aerostat had better stability characteristics compared to the TCOM 71m aerostat.