• Title/Summary/Keyword: Hull girder

Search Result 122, Processing Time 0.02 seconds

Reliability Assessment against Ultimate Bending Moment of Ships′ Hull Girder (선체의 최종굽힘 모멘트에 대한 신뢰성 검토)

  • Joo-Sung Lee;P.D.C. Yang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.1
    • /
    • pp.103-112
    • /
    • 1992
  • The ultimate bending moment of ships is one of the principle strength considered in ship design. Several methods have been proposed to predict the ultimate bending moment and its major part is, in general, predicting the ultimate compressive strength of stiffened panels. In this paper, made is the review on the methods and formulae of predicting the ultimate compressive strength and they are applied to predicting the ultimate bending moment. Safely levels of three bulk carriers have been derived evaluated for two loading conditions, stray, light ship condition and full load condition, and wave bending by Classification Society Rule(ABS, DnV and Lloyd Rule). The present reliability analysis problem is strictly non-linear and the Advanced First-Order Reliability Method has been used. From the results of parametric studies, the methods of predicting the ultimate compressive strength of stiffened panels are compared from the view point of their applicability to the reliability assessment of ships structures. The paper ends wish a brief discussion drawn from the parametric studies and the extension of the study is described.

  • PDF

Punching Fracture Simulations of Circular Unstiffened Steel Plates using Three-dimensional Fracture Surface (3차원 파단 변형률 평면을 이용한 비보강 원판의 펀칭 파단 시뮬레이션)

  • Park, Sung-Ju;Lee, Kangsu;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.474-483
    • /
    • 2016
  • Accidental events such as collisions, groundings, and hydrocarbon explosions in marine structures can cause catastrophic damage. Thus, it is extremely important to predict the extent of such damage, which determines the total amount of oil spills and the residual hull girder strength. Punching fracture tests were conducted by Choung (2009b), where various sizes of indenters and circular unstiffened steel plates with different thicknesses were used to quasi-statically realize damage extents. A three-dimensional fracture strain surface was developed based on a reference (Choung et al., 2015b), where the average stress triaxiality and average normalized Lode angle were used as the parameters governing the fracture of ductile steels. In this study, new numerical analyses were performed using very fine axisymmetric elements in combination with an Abaqus user-subroutine to implement the three-dimensional fracture strain surface. Conventional numerical analyses were also conducted for the tests to identify the best fit fracture strain values by changing the fracture strains. Based on the phenomenon of the average normalized Lode angle starting out positive and then becoming slightly negative, it was inferred that the shear stress primarily dominates in determining the fractures locations, with a partial contribution from the compressive stress. It should be stated that the three-dimensional fracture surface effectively predicted at least the shear stress-dominant fracture behavior of a mild steel.

Collapse Analysis of Ultimate Strength for the Aluminium Stiffened Plate subjected to Compressive Load (알루미늄 보강판의 압축 최종강도 붕괴 해석)

  • Park, Joo-Shin;Ko, Jae-Yong;Kim, Yun-Young
    • Journal of Navigation and Port Research
    • /
    • v.31 no.10
    • /
    • pp.825-831
    • /
    • 2007
  • The use of high-strength aluminum alloys for ship and offshore structure generally has many benefits compared to the structural steels. These materials are used widely in a variety of fields, especially in the hull and deck of high speed craft, box-girder of bridges, deck and side plates of offshore structure. The structural weight can be reduced using these aluminum structure, which can enable high speed The characteristics of stress-strain relationship of aluminum structure are fairly different from the steel one, because of the influence of Heat Affected Zone(HAZ) by the welding processing. The HAZ of aluminum is much wider than that of steel with its high heat conductivity. In this paper, the ultimate strength characteristics of aluminum stiffened panel subjected to axial loading, such as the relationship between extent of HAZ and the behavior of buckling/ultimate strength, are investigated through the Finite Element Analysis with varying its range.

Slenderness Ratio Distributions and Average Compressive Strengths of Stiffened Plates Used for In-Service Vessels (실선 보강판의 세장비 분포 및 평균 압축 강도 비교 연구)

  • Nam, Ji-Myung;Choung, Joon-Mo;Jeon, Sang-Ik;Lee, Min-Seong;Ha, Tae-Bum
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.5
    • /
    • pp.709-718
    • /
    • 2010
  • This paper deals with two contents: first, distributions of plate slenderness ratios, stiffened plate slenderness ratios, and stiffener slenderness ratios, which include dimensions and material variables of stiffened plates, of stiffened plates of large-sized in-service vessels, and, second, comparison of compressive strengths. The investigated vessels consist of 59 tankers, 49 bulkers, 28 product carriers, 15 container carriers, and 12 multi-purpose vessels. The tankers are ranged from handymax class to VLCC and larger than Suezmax class. The sizes of the bulkers are 20K to 200K deadweight. The maximum size of containers is less than 5000TEU class. Two parameters for normal distributions of the slenderness ratios (mean and standard deviation) are suggested and probable ranges of the slenderness ratios are also graphically presented. The ultimate strengths of the stiffened plates are presented using the various simplified formulas and nonlinear FEAs. As well, average compressive strength curves, which are necessary for the estimation of the hull girder moment capacities, are proposed. It is proved that formulas for stiffened plates in CSR overestimate slightly in overall average strain range. Mode5 formula (plate buckling mode) in CSR show unreasonably conservative results with respect to the ultimate strengths rather than post-ultimate average compressive strengths.

Prediction of Crack Growth Lives of an Aged Korean Coast Guard Patrol Ship based on Extended Finite Element Method(XFEM) J-Integral (확장 유한 요소법(XFEM) J-적분을 이용한 노후 순시선의 균열 성장 수명 예측)

  • Kim, Chang-Sik;Li, Chun Bao;Kim, Young Hun;Choung, Joonmo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.4
    • /
    • pp.335-343
    • /
    • 2017
  • The Newman-Raju formula and contour integral-based finite element analyses(FEAs) have been widely used to assess crack growth rates and residual lives at crack locations in ships or offshore structures, but the Newman-Raju formula is known to be less accurate for the complicated weld details and the conventional FEA-based contour integral approach needs concentrated efforts to construct FEA models. Recently, an extended finite element method(XFEM) has been proposed to reduce those modeling efforts with reliable accuracy. Stress intensity factors(SIFs) from the approaches such as the Newman-Raju formula, conventional FEA-based J-integral, and XFEM-based J-integral were compared for an infinitely long plate with a propagating elliptic crack. It was concluded that the XFEM approach was far reliable in terms of prediction ability of SIFs. Assuming a 25 year-aged coast guard patrol ship had the prescribed cracks at the bracket toes attached to longitudinal stiffeners in way of deck and bottom, SIFs were derived based on the three approaches. To obtain axial tension loads acting on the longitudinal stiffeners, long term hull girder bending moments were assumed to obey Weibull distribution of which two parameters were decided from a reference (DNV, 2014). For the complicated weld details, it was concluded that the XFEM approach could cost-effectively and accurately estimate the crack growth rates and residual lives of ship structures.

Vibration Analysis of Combined Deck Structure-Car System of Car Carriers (자동차운반선(自動車運搬船)의 갑판-차량(甲板-車輛) 연성계(聯成系)의 진동해석(振動解析))

  • S.Y.,Han;K.C.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.2
    • /
    • pp.63-77
    • /
    • 1990
  • The combined deckstructure-car system of a car carrier is especially sensitive to hull girder vibrations due to mechanical excitations and wave loads. For the free and forced vibration analysis of the system, the analytical methods based on the receptance method and two schemes for efficient applications of the methods are presented. The methods are especially relevant to dynamical reanalysis of the system subject to design modification or to dynamic optimization. The deck-car system is modelled as a combined system consisting of a stiffened plate representing deck, primary structure, and attached subsystems such as pillars, additional stiffeners and damped spring-mass systems representing cars/trucks. For response calculations of the system subjected to displacement excitations along the boundaries, the support displacement transfer ratio conceptually similar to the receptance is introduced. For the verification of accuracy and calculation efficiency of the proposed methods, numerical and experimental investigations are carried out.

  • PDF

Ultimate Strength tests Considering Stranding Damage (좌초손상을 고려한 최종강도 실험)

  • Lee, T.K.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.2
    • /
    • pp.86-91
    • /
    • 2008
  • Ships operating in littoral sea are likely to be subjected to accidental load such as stranding. Once she has damage on the hull structure, her ultimate strength will be reduced. This paper is to investigate the effect of the stranding damage on ultimate strength of ship structure by using a series of collapse tests. For the experiment, 720 mm $\times$720 mm in section and 900mm in length of five box-girder models with stiffeners were pre- pared. Of the five, one has no damage and faur have an diamond shaped damage which represents the shape of rock section in seabed. The damage size is different between models. Among the damaged models, the damages of 3 of them were made by cutting the plate and one by pressing to represent stranding damage. Experiments were carried out under pure bending load and the applied load and displacements were recorded. The ultimate strength is reduced as the damage size increases, as expected. The largest damaged model has the damage size of 30% of breadth and its ultimate strength is reduced by 21% than that of no damaged one. The pressed one has lower ultimate strength than cut one. This might be due to the fact that the plate around the pressed damage area effect negatively on the ultimate strength.

  • PDF

A Study on the Lateral Pressure Effect under Axial Compressive Load of Ship Platings (종방향 압축력을 받는 선체판부재의 횡압력 영향에 관한 연구)

  • Park Joo-Shin;Ko Jae-Yong;Lee Jun-Kyo
    • Journal of Navigation and Port Research
    • /
    • v.29 no.6 s.102
    • /
    • pp.515-522
    • /
    • 2005
  • The ship plating is generally subjected to. combined in-plane load and lateral pressure loads, In-plane loads include axial load and edge shear, which are mainly induced by overall hull girder bending and torsion of the vessel. Lateral pressure is due to. water pressure and cargo. These load components are nat always applied simultaneously, but mare than one can normally exist and interact. Hence, far mare rational and safe design of ship structures, it is af crucial importance to. better understand the interaction relationship af the buckling and ultimate strength far ship plating under combined loads. Actual ship plates are subjected to relatively small water pressure except far the impact load due to. slamming and panting etc. The present paper describes an accurate and fast procedure for analyzing the elastic-plastic large deflection behavior up to. the ultimate limit state of ship plates under combined loads. In this paper, the ultimate strength characteristics of plates under axial compressive loads and lateral pressure loads are investigated through ANSYS elastic-plastic large deflection finite element analysis with varying lateral pressure load level.

Reliability Analysis of Ship Deck Structure (선체상갑판의 신뢰성해석)

  • S.J.,Yim;Y.S.,Yang;K.T.,Chung;C.W.,Kim;Y.S.,Suh
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.3
    • /
    • pp.9-20
    • /
    • 1989
  • It is important to enhance the safety of ship structures as much as possible in order to prevent the disastrous collapse of structures. In fact, the strength problem of structures is closely related with the safety problem of structures. Recently, the direct calculation method using a rational approach based on the first principle is implemented into the structural design process instead of adopting empirical approach based on the rules. The structural designer have shown increased concern with the problem of adequacy of conventional design method based on the safety factor since it does not fully take into account some degree of variability of the applied loads on and the strength of ship structures. To deal with the analysis of structures effectively, it is necessary to have three stages being equally treated. The first one is load analysis, second one response analysis, third one safety analysis. For marine structures, most of research effort has been however put into the first and second stages. The third stage is normally done by simple procedures. Hence, the various probabilistic methods are compared in order to establish the reliability analysis techniques for ship structures. As a result, the advanced level 2 method is selected as a most effective and accurate reliability method. The validity of this method is further demonstrated by comparing the results with the conventional method for the problem of the longitudinal strength of hull girder of Ro-Ro ship.

  • PDF

Ultimate Strength Behavior Analysis on the Ship's Plate under Combined Load(Lateral Pressure Load and Axial Compressive Load) (조합하중을 받는 선체판부재의 최종강도거동 해석)

  • Park Jo-Shin;Ko Jae-Yong;Lee Jun-Kyo;Bae Dong-Kyun
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.05a
    • /
    • pp.147-154
    • /
    • 2005
  • The ship plating is generally subjected to combined in-plane load and lateral pressure loads. In-plane loads include axial load and edge shear, which are mainly induced by overall hull girder bending and torsion of the vessel. Lateral pressure is due to water pressure and cargo. These load components are not always applied simultaneously, but more than one can normally exist and interact Hence, for more rational and safe design of ship structures, it is of crucial importance to better understand the interaction relationship of the buckling and ultimate strength for ship plating under combined loads. Actual ship plates are subjected to relatively small water pressure except for the impact load due to slamming and panting etc. The present paper describes an accurate and fast procedure for analyzing the elastic-plastic large deflection behavior up to the ultimate limit state of ship plates under combined loads. In this paper, the ultimate strength characteristics of plates under axial compressive loads and lateral pressure loads are investigated through ANSYS elastic-plastic large deflection finite element analysis with varying lateral pressure load level.

  • PDF