Journal of Advanced Marine Engineering and Technology
/
v.26
no.1
/
pp.48-58
/
2002
There is a purpose of this study for the proposal of the optimum technique utilized for the vibration design initial step. The stiffened plate structure for the ship hull is made for analysis model. To begin with, dynamic characteristics of stiffened plate structure is analysed using FEM. Main vibrational mode of the structure is decided in the analytical result of FEM. The simplified equation on the natural frequency of the main vibrational mode is induced. Next, sensitivity analysis is carried out using the simplified equation, and rate of change of dynamic characteristics is calculated. Then, amount of design variable is calculated using this sensitivity value and optimum structural modification method. The change of natural frequency is made to be an objective function. Thickness of panel, cross section moment of stiffener and girder become a design variable. The validity of the optimization method using simplified equation is examined. It is shown that the result effective in the optimum modification for natural frequency of the stiffened plate structure.
Proceedings of the Korean Society for Noise and Vibration Engineering Conference
/
2003.11a
/
pp.1018-1025
/
2003
The diesel engine is often a serious excitation source in ships. Both the varying cylinder gas forces and the reciprocating and rotating mass forces associated with the crank and the connecting rod mechanism produce ample possibilities for excitation of the engine structure itself, the shafting, the surrounding substructures as well as the hull girder. This paper presents a guide for optimization of excitation forces produced by the marine propulsion 2-stroke diesel engine. The computational program for predicting the excitation forces is developed and applied to 2-stroke in-line engines. The object function is defined as the work done by every cylinder excitation force which is related to the mode shape of the diesel engine system, especially in the torsional vibration of the shafting. As a practical application of the presented method, the crank angle of 7 cylinder 2-stroke engine is optimized to reduce torsional vibration stresses on the shafting. Compared with the regular firing angle, about 60% of the 4th order torsional vibratory stress on the propeller shaft can be reduced by optimizing the crank angle irregularly. The usefulness of the presented optimization method is confirmed by the measurements.
Transactions of the Korean Society for Noise and Vibration Engineering
/
v.14
no.8
/
pp.709-717
/
2004
The diesel engine is often a serious excitation source in ships. Both the varying cylinder gas forces and the reciprocating and rotating mass forces associated with the crank and the connecting rod mechanism produce ample possibilities for excitation of the engine structure itself, the shafting, the surrounding substructures as well as the hull girder. This paper presents a guide for optimization of excitation forces produced by the marine propulsion 2-stroke diesel engine. The computational program for predicting the excitation forces is developed and applied to 2-stroke in-line engines. The object function is defined as the work done by every cylinder excitation force which is related to the mode shape of the diesel engine system, especially in the torsional vibration of the shafting. As a practical application of the presented method. the crank angle of 7 cylinder 2-stroke engine is optimized to reduce torsional vibration stresses on the shafting. Compared with the regular firing angle, about 60 % of the 4th order torsional vibratory stress on the propeller shaft can be reduced by optimizing the crank angle irregularly. The usefulness of the presented optimization method is confirmed by the measurements.
Large deck openings of ultra large container ships reduce their torsional stiffness considerably and hydroelastic analysis for reliable structural design becomes an imperative. In the early design stage the beam model coupled with 3D hydrodynamic model is a rational choice. The modal superposition method is ordinary used for solving this complex problem. The advanced thin-walled girder theory, with shear influence on both bending and torsion, is applied for calculation of dry natural modes. It is shown that relatively short engine room structure of large container ships behaves as the open hold structure with increased torsional stiffness due to deck effect. Warping discontinuity at the joint of the closed and open segments is compensated by induced distortion. The effective torsional stiffness parameters based on an energy balance approach are determined. Estimation of distortion of transverse bulkheads, as a result of torsion and warping, is given. The procedure is illustrated in the case of a ship-like pontoon and checked by 3D FEM analysis. The obtained results encourage incorporation of the modified beam model of the short engine room structure in general beam model of ship hull for the need of hydroelastic analysis, where only the first few natural modes are of interest.
Spectral fatigue damage calculations has been performed on four ships in order to assess the effect that the probabilistic modeling of sea states has on the estimated fatigue life. The damage estimation method is based on the Miner- Palmgren fatigue damage formulation and a spectral approach is used to determine the necessary variances of the stress processes. Both the horizontal and vertical hull girder bending induced stress process together with the local water pressure induced stress process is taken into account. The wave scatter diagrams are applied in the calculations and their fatigue severity is assessed by analyzing the results obtained with the ten scatter diagrams and the four ships. All four ships are analyzed both in full load and ballast conditions and while traveling at both full and reduced speed. It is found that the fatigue severity of a wave scatter diagram is dependent on several parameters, some of these being the extreme wave hight extrapolated from the scatter diagram and the mean zero up-crossing period in conjunction with the ship length . Based on these three parameters and expression is derived in order to calculate one single number describing the fatigue severity of a scatter diagram with respect to a certain ship.
Kim, Yong-Hwan;Kim, Kyong-Hwan;Kim, Jae-Han;Kim, Tae-Young;Seo, Min-Guk;Kim, Yoo-Il
International Journal of Naval Architecture and Ocean Engineering
/
v.3
no.1
/
pp.37-52
/
2011
The present paper introduced a computer program, called WISH, which is based on a time-domain Rankine panel method. The WISH has been developed for practical use to predict the linear and nonlinear ship motion and structural loads in waves. The WISH adopts three different levels of seakeeping analysis: linear, weakly-nonlinear and weak-scatterer approaches. Later, WISH-FLEX has been developed to consider hydroelasticity effects on hull-girder structure. This program can solve the springing and whipping problems by coupling between the hydrodynamic and structural problems. More recently this development has been continued to more diverse problems, including the motion responses of multiple adjacent bodies, the effects of seakeeping in ship maneuvering, and the floating-body motion in finite-depth domain with varying bathymetry. This paper introduces a brief theoretical and numerical background of the WISH package, and some validation results. Also several applications to real ships and offshore structures are shown.
International Journal of Naval Architecture and Ocean Engineering
/
v.5
no.3
/
pp.454-467
/
2013
A practical Ship Inner Shell Optimization Method (SISOM), the purpose of which is to improve the safety of the seagoing transport ship by decreasing the maximum Still Water Bending Moment (SWBM) of the hull girder under all typical loading conditions, is presented in this paper. The objective of SISOM is to make the maximum SWBM minimum, and the section areas of the inner shell are taken as optimization variables. The main requirements of the ship performances, such as cargo hold capacity, propeller and rudder immersion, bridge visibility, damage stability and prevention of pollution etc., are taken as constraints. The penalty function method is used in SISOM to change the above nonlinear constraint problem into an unconstrained one, which is then solved by applying the steepest descent method. After optimization, the optimal section area distribution of the inner shell is obtained, and the shape of inner shell is adjusted according to the optimal section area. SISOM is applied to a product oil tanker and a bulk carrier, and the maximum SWBM of the two ships is significantly decreased by changing the shape of inner shell plate slightly. The two examples prove that SISOM is highly efficient and valuable to engineering practice.
International Journal of Naval Architecture and Ocean Engineering
/
v.2
no.2
/
pp.87-95
/
2010
The structural intensity analysis, which calculates the magnitude and direction of vibrational energy flow from vibratory velocity and internal force at any point of a structure, can give information on dominant transmission paths, positions of sources and sinks of vibration energy. This paper presents a numerical simulation system for structural intensity analysis and visualization to apply for ship structures based on the finite element method. The system consists of a general purpose finite element analysis program MSC/Nastran, its pre- and post-processors and an in-house program module to calculate structural intensity using the model data and its forced vibration analysis results. Using the system, the structural intensity analysis for a 4,100 TEU container carrier is carried out to visualize structural intensity fields on the global ship structure and to investigate dominant energy flow paths from harmonic excitation sources to superstructure at resonant hull girder and superstructure modes.
Many longitudinally-arranged pipes in ships are equipped with loops as a measure to reduce stresses caused by displacement loads conveyed from the hull girder bending and/or thermal loads of carried fluid of non-ambient temperature. But as the loops have some negative effects such as causing extra manufacturing cost and occupying extra space, the number and the dimensions of the loops need to be minimized. In the meanwhile, a design formula for pipe loops has been developed by modeling them as a spring element of which stresses and axial stiffness are calculated based on the beam theory. But as the beam theory turns out to be inappropriate to deal with the complex structural behavior in the curved corner portion of the loop, this paper aims at improving the previously developed design formula by adopting correction factors which can allow for the gap between the results of beam theory and a more accurate analysis. This paper adopts a finite element analysis with two-dimensional shell elements with some validation work for it. The paper ends with a sample application of the proposed formulas showing their accuracy and efficiency.
Many longitudinally arranged pipes in ships are subject to considerable displacement loads caused by the hull girder bending of ships and/or thermal loads in some special pipes through which fluids with highly abnormal temperatures are conveyed. As these loads may cause failure in the pipes or their supporting structures, loops have been widely adopted as a measure to prevent such failure, with the idea that they can lower the stress level in a pipe by absorbing some portion of these loads. But since such loops have some negative effects, such as causing extra manufacturing cost and occupying extra space, the number and dimensions of the loops need to be minimized. This research developed design formulas for pipe loops, modeling them as a spring element, for which the axial stiffness is calculated based on the beam theory, incorporating the effects of the curvature of loop corners and the flexibility of the straight portion of the pipe. The accuracy of the proposed design formulas was verified by comparing two results respectively obtained by the proposed formulas and MSC/NASTRAN. The paper ends with a sample application of the proposed formulas showing their efficiency.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.