• Title/Summary/Keyword: Huber loss

Search Result 3, Processing Time 0.017 seconds

A Robust Energy Consumption Forecasting Model using ResNet-LSTM with Huber Loss

  • Albelwi, Saleh
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.301-307
    • /
    • 2022
  • Energy consumption has grown alongside dramatic population increases. Statistics show that buildings in particular utilize a significant amount of energy, worldwide. Because of this, building energy prediction is crucial to best optimize utilities' energy plans and also create a predictive model for consumers. To improve energy prediction performance, this paper proposes a ResNet-LSTM model that combines residual networks (ResNets) and long short-term memory (LSTM) for energy consumption prediction. ResNets are utilized to extract complex and rich features, while LSTM has the ability to learn temporal correlation; the dense layer is used as a regression to forecast energy consumption. To make our model more robust, we employed Huber loss during the optimization process. Huber loss obtains high efficiency by handling minor errors quadratically. It also takes the absolute error for large errors to increase robustness. This makes our model less sensitive to outlier data. Our proposed system was trained on historical data to forecast energy consumption for different time series. To evaluate our proposed model, we compared our model's performance with several popular machine learning and deep learning methods such as linear regression, neural networks, decision tree, and convolutional neural networks, etc. The results show that our proposed model predicted energy consumption most accurately.

Empirical Choice of the Shape Parameter for Robust Support Vector Machines

  • Pak, Ro-Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.4
    • /
    • pp.543-549
    • /
    • 2008
  • Inspired by using a robust loss function in the support vector machine regression to control training error and the idea of robust template matching with M-estimator, Chen (2004) applies M-estimator techniques to gaussian radial basis functions and form a new class of robust kernels for the support vector machines. We are specially interested in the shape of the Huber's M-estimator in this context and propose a way to find the shape parameter of the Huber's M-estimating function. For simplicity, only the two-class classification problem is considered.

Line-Based SLAM Using Vanishing Point Measurements Loss Function (소실점 정보의 Loss 함수를 이용한 특징선 기반 SLAM)

  • Hyunjun Lim;Hyun Myung
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.330-336
    • /
    • 2023
  • In this paper, a novel line-based simultaneous localization and mapping (SLAM) using a loss function of vanishing point measurements is proposed. In general, the Huber norm is used as a loss function for point and line features in feature-based SLAM. The proposed loss function of vanishing point measurements is based on the unit sphere model. Because the point and line feature measurements define the reprojection error in the image plane as a residual, linear loss functions such as the Huber norm is used. However, the typical loss functions are not suitable for vanishing point measurements with unbounded problems. To tackle this problem, we propose a loss function for vanishing point measurements. The proposed loss function is based on unit sphere model. Finally, we prove the validity of the loss function for vanishing point through experiments on a public dataset.