• Title/Summary/Keyword: Hub Radius

Search Result 41, Processing Time 0.023 seconds

Emergency Room access by Population Density and distance of Daegu Metropolitan city (대구광역시의 인구밀집과 거리에 따른 응급실 접근성)

  • Kim, Myung-Gwan;Han, Seung-Woo;Kim, Ki-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.218-223
    • /
    • 2020
  • This study examined the accessibility of emergency rooms according to the population density and distance in Daegu Metropolitan City to help improve the quality and emergency medical accessibility problems in Daegu Metropolitan City. To observe the geographical requirements, the number of population in eup, myeon, dong, available emergency, and available emergency compared to the population were mapped through the S-GIS of Statistics Korea to visualize the data based on the 3km radius. To determine the difference in accessibility to emergency rooms for each district in Daegu Metropolitan City, the data were analyzed by ANOVA and Scheffe. According to the average number of emergencies available in Daegu Metropolitan City within a 3-kilometer radius were 5.7 in Jung-gu, 5.0 in Nam-gu, 1.6 in Buk-gu, 0.4 in Dong-gu, 2.4 in Seo-gu, 0.9 in Suseong-gu, 3.5 in Dalseo-gu, and 0.1 in Dalseong-gun; there was a statistically significant difference (p<.001). The available emergency within a 3km radius and available emergency per 1,000 people were concentrated in the center. Therefore, it may be necessary to institute an urban emergency medical network by establishing a point that serves as an intermediate hub to provide emergency medical care to citizens far from the center.

Fluid-Structure Interaction Study on Diffuser Pump With a Two-Way Coupling Method

  • Xu, Huan;Liu, Houlin;Tan, Minggao;Cui, Jianbao
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.2
    • /
    • pp.87-93
    • /
    • 2013
  • In order to study the effect of the fluid-structure interaction (FSI) on the simulation results, the external characteristics and internal flow features of a diffuser pump were analyzed with a two-way flow solid coupling method. And the static and dynamic structure analysis of the blade was also caculated with the FEA method. The steady flow field is based on Reynolds Averaged N-S equations with standard $k-{\varepsilon}$ turbulent model, the unsteady flow field is based on the large eddy simulation, and the structure response is based on elastic transient structural dynamic equation. The results showed that the effect of FSI on the head prediction based on CFD really exists. At the same radius, the van mises stress on the nodes closed shroud and hub was larger than other nodes. A large deformation region existed near inlet side at the middle of blades. The strength of impeller satisfied the strength requirement with static stress analysis based on the fourth strength theory. The dynamic stress varied periodically with the impeller rotating. It was also found that the fundamental frequency of the dynamic stress is the rotating frequency and its harmonic frequency. The frequency of maximum stress amplitude at node 1626 was 7 times of the rotating frequency. The frequency of maximum stress amplitude at node 2328 was 14 times of the rotating frequency. No matter strength failure or fatigue failure, the root of blades near shroud is the key region to analyse.

An Experimental Study of Incidence Angel Effect on 3-D Axial Type Turbine (3차원 축류형 터빈에서 입사각의 영향에 관한 실험적 연구)

  • Kim, Dong-Sik;Cho, Soo-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1292-1301
    • /
    • 2002
  • An experimental study of turbine performance is conducted with various incidence angles on a rotating turbine rotor. 5 different incidence angles are applied from -17$^{\circ}$to 13$^{\circ}$with 7.5$^{\circ}$gaps. In order to precisely set up the incidence angles at the rotor inlet, 5 turbine discs are manufactured with the different fir tree section. Total-to-total efficiencies are obtained on the several off-design points with considering the exit total pressure, which is meas fred at 12 locations between the hub and casing using a pressure rake. The degree of reaction is 0.373 at the mean radius, and Reynolds number based on the rotor chord is 0.86$\times$10$^{5}$ at the turbine inlet on the design point experiment. The experiment on a single-stage turbine is conducted at the low-pressure and low-speed state, but it is sufficient to consider the blade loading effect due to the rotating apparatus even though the total pressure loss at the exit is increased proportionally to the turbine output power. The experimental results recommend 6$^{\circ}$as an optimum incidence angle on the turbine blade design. The total-to-total efficiency is steeply decreased when the incidence angle is over $\pm$9$^{\circ}$ from the optimum incidence angle. In the range of less than -10$^{\circ}$incidence angle, 7.5$^{\circ}$ reduction of incidence angle generates 15% decrease of total-to-total efficiency. This result is obtained on the same rotor blade by changing only the rotational speed to minimize the effect of profile and secondary flow loss in the passage. Experimental results show that the change rate of total-to-total efficiency according to the incidence angle change is unchanged although the turbine operates at the off-design condition.

Helicopter BVI Noise Prediction Using Acoustic Analogy and High Resolution Airloads of Time Marching Free Wake Method (자유후류기법에 의한 고해상도 공기력과 음향상사법을 이용한 헬리콥터 로터 블레이드-와류 상호작용 소음 예측)

  • Chung, K.;Lee, D.J.;Hwang, C.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.3 s.108
    • /
    • pp.291-297
    • /
    • 2006
  • The BVI(blade vortex interaction) noise Prediction has been one of the most challenging acoustic analyses in helicopter aeromechanical Phenomenon. It is well known high resolution airloads data with accurate tip vortex positions are necessary for the accurate prediction of this phenomenon. The truly unsteady time-marching free-wake method, which is able to capture the tip vortices instability in hover and axial flights, is expanded with the rotor flapping motion and trim routine to predict unsteady airloads in forward and descent flights. And Farassat formulation 1-A based on the FW-H equation is applied for the noise prediction considering the blade flapping motion. Main objective of this study is to validate the newly developed prediction code. To achieve the objective, the descent flight condition of AH-1 OLS(operational loads survey) configuration is analyzed using present code. The predicted sectional thrust distribution and sectional airloads time histories show the present scheme is able to capture well the unsteady airloads caused by a parallel BVI. Finally, the predicted noise data, observed in two different positions where are 3.44 times of rotor radius far from the hub center, are quite reasonable agreements with the experimental data compared to the other analysis results.

Dynamic Characteristics of Helicopter Bearingless Main Rotor (헬리콥터 무베어링 주로터의 동특성 시험)

  • Yun, Chul Yong;Song, Keun Woong;Kim, Deog-Kwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.5
    • /
    • pp.439-446
    • /
    • 2016
  • The characteristics of bearingless main rotor of helicopter are investigated through non-rotating tests and rotating tests. The stiffness and natural frequencies of rotor blades, flexbeam, and torque tube which are core components of baearingless rotor are measured to obtain input material properties for rotor analysis. The functional test on ground for assembly of one hub with damper, snubber, and no blade is carried out to check interfaces between components, kinematics of components, and pitch motion ranges under applied loads including centrifugal load. The 4-bladed bearingless rotor with 5.82m of rotor radius is tested on the whirl tower with rotation plane of 9.65m height. The thrust and power are measured to obtain hover performance and the frequencies and dampings of the rotor are obtained by excitation of cyclic pitch by hydraulic actuators.

Bending Vibration of Rotating Cantilever Beams (회전 외팔보의 굽힘 진동해석)

  • 유홍희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.891-898
    • /
    • 1992
  • When catilever beams rotate about axes perpendicular to the underformed beam's longitudinal axis, their bending stiffnesses change due to the stretching caused by centrifugal inertia forces. Such phenomena result in variations of natural frequencies and mode shapes associated with constant speed rotational motions of the beams. These variations are important in many practical applications such as helicopter blades, turbomachines, and space structures. This paper presents the formulation of a set of linear equations governing the lateral motion of rotating cantilever beams. These equations can be used to provide accurate predictions of the variations of natural frequencies and mode shapes associated with constant speed rotational motions of the beams. These variations are important in many practical applications such as helicopter blades, turbomachines, and space structures. This paper presents the formulation of a set of linear equations governing the lateral motion of rotating cantilever beams. These equations can be used to provide accurate predictions of the variations of natural frequencies and mode shapes due to rotation. This technique is simpler and more consistent than other conventional techniques which are commonly used in the literature.

Experimental Study on the Unsteady Flow Characteristics for the Counter-Rotating Axial Flow Fan

  • Cho, L.S.;Lee, S.W.;Cho, J.S.;Kang, J.S.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.790-798
    • /
    • 2008
  • Counter-rotating axial flow fan(CRF) consists of two counter-rotating rotors without stator blades. CRF shows the complex flow characteristics of the three-dimensional, viscous, and unsteady flow fields. For the understanding of the entire core flow in CRF, it is necessary to investigate the three-dimensional unsteady flow field between the rotors. This information is also essential to improve the aerodynamic characteristics and to reduce the aerodynamic noise level and vibration characteristics of the CRF. In this paper, experimental study on the three-dimensional unsteady flow of the CRF is performed at the design point(operating point). Flow fields in the CRF are measured at the cross-sectional planes of the upstream and downstream of each rotor using the $45^{\circ}$ inclined hot-wire. The phase-locked averaged hot-wire technique utilizes the inclined hot-wire, which rotates successively with 120 degree increments about its own axis. Three-dimensional unsteady flow characteristics such as tip vortex, secondary flow and tip leakage flow in the CRF are shown in the form of the axial, radial and tangential velocity vector plot and velocity contour. The phase-locked averaged velocity profiles of the CRF are analyzed by means of the stationary unsteady measurement technique. At the mean radius of the front rotor inlet and the outlet, the phase-locked averaged velocity profiles show more the periodical flow characteristics than those of the hub region. At the tip region of the CRF, the axial velocity is decreased due to the boundary layer effect of the fan casing and the tip vortex flow. The radial and the tangential velocity profiles show the most unstable and unsteady flow characteristics compared with other position of rotors. But, the phase-locked averaged velocity profiles of the downstream of the rear rotor show the aperiodic flow pattern due to the mixture of the front rotor wake period and the rear rotor rotational period.

  • PDF

Two-stage crack identification in an Euler-Bernoulli rotating beam using modal parameters and Genetic Algorithm

  • Belen Munoz-Abella;Lourdes Rubio;Patricia Rubio
    • Smart Structures and Systems
    • /
    • v.33 no.2
    • /
    • pp.165-175
    • /
    • 2024
  • Rotating beams play a crucial role in representing complex mechanical components that are prevalent in vital sectors like energy and transportation industries. These components are susceptible to the initiation and propagation of cracks, posing a substantial risk to their structural integrity. This study presents a two-stage methodology for detecting the location and estimating the size of an open-edge transverse crack in a rotating Euler-Bernoulli beam with a uniform cross-section. Understanding the dynamic behavior of beams is vital for the effective design and evaluation of their operational performance. In this regard, modal parameters such as natural frequencies and eigenmodes are frequently employed to detect and identify damages in mechanical components. In this instance, the Frobenius method has been employed to determine the first two natural frequencies and corresponding eigenmodes associated with flapwise bending vibration. These calculations have been performed by solving the governing differential equation that describes the motion of the beam. Various parameters have been considered, such as rotational speed, beam slenderness, hub radius, and crack size and location. The effect of the crack has been replaced by a rotational spring whose stiffness represents the increase in local flexibility as a result of the damage presence. In the initial phase of the proposed methodology, a damage index utilizing the slope of the beam's eigenmode has been employed to estimate the location of the crack. After detecting the presence of damage, the size of the crack is determined using a Genetic Algorithm optimization technique. The ultimate goal of the proposed methodology is to enable the development of more suitable and reliable maintenance plans.

Localization Algorithm in Wireless Sensor Networks using the Acceleration sensor (가속도 센서를 이용한 무선 센서 네트워크하에서의 위치 인식 알고리즘)

  • Hong, Sung-Hwa;Jung, Suk-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1294-1300
    • /
    • 2010
  • In an environment where all nodes move, the sensor node receives anchor node's position information within communication radius and modifies the received anchor node's position information by one's traveled distance and direction in saving in one's memory, where if there at least 3, one's position is determined by performing localization through trilateration. The proposed localization mechanisms have been simulated in the Matlab. In an environment where certain distance is maintained and nodes move towards the same direction, the probability for the sensor node to meet at least 3 anchor nodes with absolute coordinates within 1 hub range is remote. Even if the sensor node has estimated its position with at least 3 beacon information, the angle ${\theta}$ error of accelerator and digital compass will continuously apply by the passage of time in enlarging the error tolerance and its estimated position not being relied. Dead reckoning technology is used as a supplementary position tracking navigation technology in places where GPS doesn't operate, where one's position can be estimated by knowing the distance and direction the node has traveled with acceleration sensor and digital compass. The localization algorithm to be explained is a localization technique that uses Dead reckoning where all nodes are loaded with omnidirectional antenna, and assumes that one's traveling distance and direction can be known with accelerator and digital compass. The simulation results show that our scheme performed better than other mechanisms (e.g. MCL, DV-distance).

Analysis of the Flexural Vibrations for the Rotating Cantilevered Rectangular Plates (회전하는 외팔 사각판의 굽힘진동 해석)

  • 이종민;이영신
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.59-64
    • /
    • 1992
  • 터빈 블레이드와 같이 회전하는 구조물의 파단은 공진 근처에서 진동이 발 생할 때에 이에 기인하는 피로에 의하여 발생한다. 그러므로 이와 같은 파단 을 피하기 위해서는 설계 단계에서 이론적인 계산에 의하여 구조물의 고유 진동수를 결정하는 것이 상당히 중요하다. 판이 회전을 받게 되면 원심력에 의하여 판의 강성이 증가하므로 고유진동수가 회전하지 않는 판의 고유진동 수보다는 상당히 증가하게 된다. 이에 대한 연구가 국내외에서 상당수 행하 여졌지만, 연구의 대부분이 회전의 영향을 고려하지 않은 정지판(stationary plate)에 대한 것이며 뢰전을 고려한 연구는 극히 제한되어 있다. 또한 회전 의 영향을 고려한 연구의 대부분이 해석 대상을 보로서 단순화 시켰고 해법 으로는 유한요소법과 Ritz법 등을 사용하였다. 이는 블레이드가 지니고 있는 기하학적인 형상과 진동 특성이 해석적인 방법으로 해결하는 데에는 상당한 어려움이 있기 때문이다. 실제적으로는 터빈 블레이드와 같은 회전체의 진동 특성이 설치각이나 비틀림각, 판의 형상비, 회전속도 등의 변화에 의하여 영 향을 받기 때문에 보와 같은 진동 거동을 보이기보다는 판이나 셀과 같은 진동 거동을 보이므로 보다 정확한 해석을 수행하기 위해서는 해석 대상을 판이나 셀로서 취급하는 것이 타당하다. 따라서 본 연구에서는 위와 같은 이 유 때문에 해석 대상을 등방성 사각판과 직교이방성 복합재료 사각판으로 선택하였으며, 구조물의 고유진동수에 영향을 미치는 다음과 같은 인자들을 해석에 고려하였다. 1. 회전속도 (rotational speed) 2. 설치각 (setting angle) 3. 허브의 반경 (hub radius) 4. 판의 형상비 (aspect ratio) 5. 적층순서 (stacking sequence)구조물에 대한 동적실험(dynamic test)을 통하여 단기간에 동적특성을 결정하고 SDM(structure dynamic modification)이나 FRS(force response simulation)를 수행하여 임의의 좌표 공간에 대한 진동수준을 해석적으로 예측할 뿐만 아니라 구조물의 진동제어 를 위한 동적인자를 변경시킬 수 있는 정보를 제공하며 장비를 방진할 경우 신뢰성 있는 전달률을 결정할 수 있다. 실험적으로 철교, 교량이나 건물의 철골구조 및 2층 바닥 등 대,중형의 복잡한 구조물에 대항 동특성을 나타내 는 모빌리티를 결정할 경우 충격 가진 실험이 사용되는 실험장비 측면에서 나 실험을 수행하는 과정이 대체적으로 간편하다. 그러나 이 경우 대상 구조 물을 충분히 가진시킬수 있는 용량의 대형 충격기(large impact hammer)가 필요하게 된다. 이러한 동적실험은 약 길이 61m, 폭 16m의 4경간 교량에 대 하여 동적실험을 수행하여 가능성을 확인하였다. 여기서는 실험실 수준의 평 판모델을 제작하고 실제 현장에서 이루어질 수 있는 진동제어 구조물에 대 한 동적실험 및 FRS를 수행하는 과정과 동일하게 따름으로써 실제 발생할 수 있는 오차나 error를 실험실내의 차원에서 파악하여 진동원을 있는 구조 물에 대한 진동제어기술을 보유하고자 한다. 이용한 해마의 부피측정은 해마경화증 환자의 진단에 있어 육안적인 MR 진단이 어려운 제한된 경우에만 실제적 도움을 줄 수 있는 보조적인 방법으로 생각된다.ofile whereas relaxivity at high field is not affected by τS. On the other hand, the change in τV does not affect low field profile but stron

  • PDF