• Title/Summary/Keyword: Hourly monitoring

Search Result 104, Processing Time 0.026 seconds

A study of Distribution Characteristic of NO2 Concentration at Busan Metropolitan City (부산광역시 NO2 농도 분포 특성에 관한 연구)

  • Jang Nan-Sim
    • Journal of Environmental Science International
    • /
    • v.14 no.11
    • /
    • pp.1035-1047
    • /
    • 2005
  • By using hourly $NO_2$ concentration data$(1998\~2000)$ at the Busan Metropolitan City air qualify monitoring sites, characteristics of daily mean value of $NO_2$ concentration was discussed in space and time. The correlation between $NO_2$ concentration and other relating air pollutants was analyzed by using SAS program and meteorological parameters as well. After choosing representative 4 areas, this study used hourly concentration data$(1998\~2000)$ from air quality monitoring sites on $NO_2,\;NO,\;O_3,\;CO,\;SO_2\;and\;PM_{10}$. Typical metropolitan characteristics of two peaks in a day was shown in the variation of $NO_2$ concentration of Busan city.

Half-hourly Rainfall Monitoring over the Indochina Area from MTSAT Infrared Measurements: Development of Rain Estimation Algorithm using an Artificial Neural Network

  • Thu, Nguyen Vinh;Sohn, Byung-Ju
    • Journal of the Korean earth science society
    • /
    • v.31 no.5
    • /
    • pp.465-474
    • /
    • 2010
  • Real-time rainfall monitoring is of great practical importance over the highly populated Indochina area, which is prone to natural disasters, in particular in association with rainfall. With the goal of d etermining near real-time half-hourlyrain estimates from satellite, the three-layer, artificial neural networks (ANN) approach was used to train the brightness temperatures at 6.7, 11, and $12-{\mu}m$ channels of the Japanese geostationary satellite MTSAT against passive microwavebased rain rates from Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and TRMM Precipitation Radar (PR) data for the June-September 2005 period. The developed model was applied to the MTSAT data for the June-September 2006 period. The results demonstrate that the developed algorithm is comparable to the PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks) results and can be used for flood monitoring across the Indochina area on a half-hourly time scale.

Short-term load forscasting using general exponential smoonthing (지수평활을 이용한 단기부하 예측)

  • Koh, Hee-Soog;Lee, Chung-Sig;Chong, Hyong-Hwan;Lee, Tae-Gi
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.29-32
    • /
    • 1993
  • A technique computing short-term load foadcasting is essential for monitoring and controlling power system operation. This paper shows the use of general exponential smoothing to develop an adaptive forecasting system based on observed value of hourly demand. Forecasts of hourly load with lead times of one to twenty-four hours are computed at hourly intervals throughout the week. Standard error for lead times of one to twenty-four hour range from three to four percent average load. Studies are planned to investigate the use of weather influence to increase forecast accuracy.

  • PDF

Analysis of Temporal and Spatial Changes in Observed Groundwater Level in a Paddy Region (논 관개 지역의 지하수위 관측을 통한 시공간적 지하수위 변동 특성 분석)

  • Jang, Min-Won;Park, Ki-Wook;Kim, Seong Joon;Bae, Seung-Jong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.6
    • /
    • pp.163-171
    • /
    • 2015
  • This study aimed to establish a field observation system for monitoring tempo-spatially precise changes of groundwater level and to analyze the impact of rainfall and irrigation practices on groundwater changes in paddy regions. The monitoring system comprising of all nine groundwater observation wells and four ponding depth sensors was installed in a part of paddy regions benefited from Gosam reservoir, Ansung-si. The result of grundwater level change during the irrigation period in 2002 was averagely 0.51 m higher than that during the non-irrigation period. In particular between March before puddling and June after transplanting, there was maximum 1.23 m rise in groundwater level. On the other hand, concerning the change in ponding depth, groundwater level changed similarly, and hourly rainfall was revealed to have better correlation with 24-hour delayed hourly groundwater level than with the corresponding groundwater level. Eventually, this study could be referenced for further studies to set up a more comprehensive and sustainable monitoring system of groundwater conditions.

Development of Nth Highest Hourly Traffic Volume Forecasting Models (고속국도에서의 연평균일교통량에 따른 N번째 고순위 시간교통량 추정모형 개발에 관한 연구)

  • Oh, Ju-Sam
    • International Journal of Highway Engineering
    • /
    • v.9 no.3
    • /
    • pp.13-20
    • /
    • 2007
  • For calculating the number of lane, it is essential to gain the 30th or 100th highest design hourly volume. The design hourly volume obtained from AADT multiplied by design hour factor. In this paper, we developed the regression models fur estimating the 30th highest hour volume and 100th highest hour volume as defined by AADT 50,000 criterion based on the data obtained the 34 monitoring sites in highway. By comparing the performance of the proposed models and conventional models using MAPE, the proposed model for 30th highest design hourly volume reduced the estimator error of 11.83% than that of conventional methods for less than AADT 50,000 and decreased estimation error of 22.17% than that of conventional method for more than AADT 50,000. Moreover, the proposed model for 100th highest design hourly volume reduced the estimator error of 8.16% than that of conventional methods for less than AADT 50,000 and decreased estimation error of 15.25% than that of conventional method for more than AADT 50,000.

  • PDF

Improvement of Temporal Resolution for Land Surface Monitoring by the Geostationary Ocean Color Imager Data

  • Lee, Hwa-Seon;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.1
    • /
    • pp.25-38
    • /
    • 2016
  • With the increasing need for high temporal resolution satellite imagery for monitoring land surfaces, this study evaluated the temporal resolution of the NDVI composites from Geostationary Ocean Color Imager (GOCI) data. The GOCI is the first geostationary satellite sensor designed to provide continuous images over a $2,500{\times}2,500km^2$ area of the northeast Asian region with relatively high spatial resolution of 500 m. We used total 2,944 hourly images of the GOCI level 1B radiance data obtained during the one-year period from April 2011 to March 2012. A daily NDVI composite was produced by maximum value compositing of eight hourly images captured during day-time. Further NDVI composites were created with different compositing periods ranging from two to five days. The cloud coverage of each composite was estimated by the cloud detection method developed in study and then compared with the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua cloud product and 16-day NDVI composite. The GOCI NDVI composites showed much higher temporal resolution with less cloud coverage than the MODIS NDVI products. The average of cloud coverage for the five-day GOCI composites during the one year was only 2.5%, which is a significant improvement compared to the 8.9%~19.3% cloud coverage in the MODIS 16-day NDVI composites.

Characteristics of Spacio-Temporal Variation for PM10 Concentration in Busan (부산지역 PM10농도의 시간 및 공간적 변화 특성)

  • 전병일
    • Journal of Environmental Science International
    • /
    • v.12 no.10
    • /
    • pp.1033-1041
    • /
    • 2003
  • Hourly data of PM10 concentration collected from nine automatic air quality monitoring stations in Busan from 1999 to 2002 were analyzed to evaluate the spatio-temporal variation and meteorological characteristics of PM10 episodes in Busan metropolitan area. Mean concentrations ranged from 47$\mu\textrm{g}$/㎥ to 77$\mu\textrm{g}$/㎥. For most stations, mean seasonal hourly concentrations are lowest in summer and highest in spring. PM10 episode above daily mean standard(150$\mu\textrm{g}$/㎥) exhibited a maximum frequency at Gamjeondong and a minimum at Dongsamdong, and a maximum in March and a minimum in July and August. The diurnal variation of PM10 episode days is strongly influenced by traffic loads and meteorological conditions.

Cyclic Change of Phytoplankton Community in Mankyeong River Estuary prior to the Completion of the Saemankeum Seawall (새만금 방조제 완공 이전 만경강 하구역 식물플랑크톤 군집의 주기적인 변동)

  • Kim, Young-Geel;Park, Jong-Woo;Jang, Keon-Gang;Yih, Won-Ho
    • Ocean and Polar Research
    • /
    • v.31 no.1
    • /
    • pp.63-70
    • /
    • 2009
  • Eutrophicated water fed through Mankyeong River and Dongjin River into the new Saemankeum Lakemight seriously affect the water quality and phytoplankton community in the lake. To obtain control reference data for the later studies on environmental changes due to the construction of the Saemankeum Sea Wall, we performed a monthly investigation on the physico-chemical properties of the water and phytoplankton community at 3 stations in the Mankyeong River Estuary over 14 months starting from September 1999. Water temperature ranged from $0.3{\sim}32.9^{\circ}C$ due to the typical seasonal variations in temperate on the coasts and salinity exhibited a wide annual range of $0.2{\sim}33.7$ psu along with regular and huge hourly variations according to tidal cycles. Inorganic nutrients were supplied from rivers to the monitoring station and the whole lake. The average concentration of total-N, $6.99\;mg{\cdot}l^{-1}$, was higher than the water quality for agricultural use with peak values occurring in winter. Species composition showed a seasonal succession pattern, where a high diversity was observedin summer and autumn and vice versa in winter. Hourly variations of water properties in the "Mankyeong bridge" Station were quite regular and well in accordance with the daily tidal cycles. The different degree of sea water intrusion during the flood tide at each of the 3 stations exhibited a different range and variation pattern of water temperature and salinity throughout a day. Hourly changes in species composition were in harmony with the daily tidal cycles, resulting in extremely variable spatio-temporal variation.

Variability of measured modal frequencies of a cable-stayed bridge under different wind conditions

  • Ni, Y.Q.;Ko, J.M.;Hua, X.G.;Zhou, H.F.
    • Smart Structures and Systems
    • /
    • v.3 no.3
    • /
    • pp.341-356
    • /
    • 2007
  • A good understanding of normal modal variability of civil structures due to varying environmental conditions such as temperature and wind is important for reliable performance of vibration-based damage detection methods. This paper addresses the quantification of wind-induced modal variability of a cable-stayed bridge making use of one-year monitoring data. In order to discriminate the wind-induced modal variability from the temperature-induced modal variability, the one-year monitoring data are divided into two sets: the first set includes the data obtained under weak wind conditions (hourly-average wind speed less than 2 m/s) during all four seasons, and the second set includes the data obtained under both weak and strong (typhoon) wind conditions during the summer only. The measured modal frequencies and temperatures of the bridge obtained from the first set of data are used to formulate temperature-frequency correlation models by means of artificial neural network technique. Before the second set of data is utilized to quantify the wind-induced modal variability, the effect of temperature on the measured modal frequencies is first eliminated by normalizing these modal frequencies to a reference temperature with the use of the temperature-frequency correlation models. Then the wind-induced modal variability is quantitatively evaluated by correlating the normalized modal frequencies for each mode with the wind speed measurement data. It is revealed that in contrast to the dependence of modal frequencies on temperature, there is no explicit correlation between the modal frequencies and wind intensity. For most of the measured modes, the modal frequencies exhibit a slightly increasing trend with the increase of wind speed in statistical sense. The relative variation of the modal frequencies arising from wind effect (with the maximum hourly-average wind speed up to 17.6 m/s) is estimated to range from 1.61% to 7.87% for the measured 8 modes of the bridge, being notably less than the modal variability caused by temperature effect.

Korea peninsula water vapor monitoring using GPS/MET technique(In case of the typhoon MAEMI) (GPS/MET 기술을 이용한 한반도 수증기 변화량 모니터링(태풍 매미의 경우))

  • 송동섭;윤홍식
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.131-137
    • /
    • 2004
  • GPS/Meteorology technique for PWV monitoring is currently actively being researched an advanced nation. We deal with the monitoring of GPS derived PWV during the passage of Typhoon MAEMI. Typhoon MAEMI which caused a series damage was passed over in Korea peninsula from September 12 to September 13, 2003. We obtained GPS-PWV at 17th GPS permanent stations. We retrieve GPS data hourly and use Gipsy-Oasis II software. The GPS-PWV time series results demonstrate that PWV is, in general, high before and during the occurrence of the typhoon, and low after the typhoon.

  • PDF