• Title/Summary/Keyword: Hourly

Search Result 1,152, Processing Time 0.028 seconds

A Study on Correlation of Outdoor Environmental Condition about Cooling Load (냉방부하에 영향을 미치는 외기 환경조건의 상관관계에 관한 연구)

  • Lee, Je-Myo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.11
    • /
    • pp.759-766
    • /
    • 2012
  • To estimate the cooling load for the following day, outdoor temperature and humidity are needed in hourly base. But the meteorological administration forecasts only maximum and minimum temperature. New methodology is proposed for predicting hourly outdoor temperature and humidity by using the forecasted maximum and minimum temperature. The correlations for normalized outdoor temperature and specific humidity has been derived from the weather data for five years at Seoul, Daejeon and Pusan. The correlations for normalized temperature are independent of date, while the correlations for specific humidity are linearly dependent on date. The predicted results show fairly good agreement with the measured data. The prediction program is also developed for hourly outdoor dry bulb temperature, specific humidity, dew point, relative humidity, enthalpy and specific volume.

A Study on Prediction of Hourly Cooling Load Using Building Area (건물 면적을 이용한 시간별 냉방부하 예측에 관한 연구)

  • Yoo, Seong-Yeon;Han, Kyu-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.11
    • /
    • pp.798-804
    • /
    • 2010
  • New methodology is proposed to predict the hourly cooling load of the next day using maximum/minimum temperature and building area. The maximum and minimum temperature are obtained from forecasted weather data. The cooling load parameters related to building area are set through a database provided from reference buildings. To validate the performance of the proposed method, the predicted cooling loads in hourly bases are calculated and compared with the measured data. The predicted results show fairly good agreement with the measured data for benchmarking building.

Optimal Operating Strategy of Distributed Generation Considering Hourly Reliability Worth (시간별 신뢰도 가치를 고려한 분산전원의 최적 운영전략)

  • 배인수;신동준;김진오
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.8
    • /
    • pp.457-462
    • /
    • 2003
  • This paper presents an optimal operating strategy of distributed generation (DG) with reliability worth evaluation of distribution systems. Using DG for peak-shaving unit could reduce the overall system operating cost, and using DG for standby power unit could reduce the customer interruption cost. If DG operating cost is less than utility power cost in peak time, DG should be running to reduce the overall system operating cost. When customer interruption cost enlarges, however, standby power strategy may be the better operating strategy than peak-shaving strategy. Selection of whether DG should be operated for peak-shaving or for standby power, needs the accurate reliability worth evaluation and the accurate power cost evaluation. Instead of using annual average reliability worth, the concept of hourly reliability worth is introduced in this paper to determine the optimal operating decision of DG. Applying suggested hourly reliability worth, the distribution companies that possess DG could set up the optimal operating strategy of DG.

Short-term load forscasting using general exponential smoonthing (지수평활을 이용한 단기부하 예측)

  • Koh, Hee-Soog;Lee, Chung-Sig;Chong, Hyong-Hwan;Lee, Tae-Gi
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.29-32
    • /
    • 1993
  • A technique computing short-term load foadcasting is essential for monitoring and controlling power system operation. This paper shows the use of general exponential smoothing to develop an adaptive forecasting system based on observed value of hourly demand. Forecasts of hourly load with lead times of one to twenty-four hours are computed at hourly intervals throughout the week. Standard error for lead times of one to twenty-four hour range from three to four percent average load. Studies are planned to investigate the use of weather influence to increase forecast accuracy.

  • PDF

Analysis and Calculation of Global Hourly Solar Irradiation Based on Sunshine Duration for Major Cities in Korea (국내 주요도시의 일조시간데이터를 이용한 시간당전일사량 산출 및 분석)

  • Lee, Kwan-Ho;Sim, Kwang-Yeal
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.2
    • /
    • pp.16-21
    • /
    • 2010
  • Computer simulation of buildings and solar energy systems are being used increasingly in energy assessments and design. This paper discusses the possibility of using sunshine duration data instead of global hourly solar irradiation (GHSI) data for localities with abundant data on sunshine duration. For six locations in South Korea where global radiation is currently measured, the global radiation was calculated using Sunshine Duration Radiation Model (SDRM), compared and analyzed. Results of SDRM has been compared with the measured data on the coefficients of determination (R2), root-mean-square error (RMSE) and mean bias error (MBE). This study recommends the use of sunshine duration based irradiation models if measured solar radiation data is not available.

The Application of Adaptive Network-based Fuzzy Inference System (ANFIS) for Modeling the Hourly Runoff in the Gapcheon Watershed (적응형 네트워크 기반 퍼지추론 시스템을 적용한 갑천유역의 홍수유출 모델링)

  • Kim, Ho Jun;Chung, Gunhui;Lee, Do-Hun;Lee, Eun Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5B
    • /
    • pp.405-414
    • /
    • 2011
  • The adaptive network-based fuzzy inference system (ANFIS) which had a success for time series prediction and system control was applied for modeling the hourly runoff in the Gapcheon watershed. The ANFIS used the antecedent rainfall and runoff as the input. The ANFIS was trained by varying the various simulation factors such as mean areal rainfall estimation, the number of input variables, the type of membership function and the number of membership function. The root mean square error (RMSE), mean peak runoff error (PE), and mean peak time error (TE) were used for validating the ANFIS simulation. The ANFIS predicted runoff was in good agreement with the measured runoff and the applicability of ANFIS for modelling the hourly runoff appeared to be good. The forecasting ability of ANFIS up to the maximum 8 lead hour was investigated by applying the different input structure to ANFIS model. The accuracy of ANFIS for predicting the hourly runoff was reduced as the forecasting lead hours increased. The long-term predictability of ANFIS for forecasting the hourly runoff at longer lead hours appeared to be limited. The ANFIS might be useful for modeling the hourly runoff and has an advantage over the physically based models because the model construction of ANFIS based on only input and output data is relatively simple.

Characteristics and Prediction of Total Ozone and UV-B Irradiance in East Asia Including the Korean Peninsula (한반도를 포함한 동아시아 영역에서 오존전량과 유해자외선의 특성과 예측)

  • Moon, Yun-Seob;Seok, Min-Woo;Kim, Yoo-Keun
    • Journal of Environmental Science International
    • /
    • v.15 no.8
    • /
    • pp.701-718
    • /
    • 2006
  • The average ratio of the daily UV-B to total solar (75) irradiance at Busan (35.23$^{\circ}$N, 129.07$^{\circ}$E) in Korea is found as 0.11%. There is also a high exponential relationship between hourly UV-B and total solar irradiance: UV-B=exp (a$\times$(75-b))(R$^2$=0.93). The daily variation of total ozone is compared with the UV-B irradiance at Pohang (36.03$^{\circ}$N, 129.40$^{\circ}$E) in Korea using the Total Ozone Mapping Spectrometer (TOMS) data during the period of May to July in 2005. The total ozone (TO) has been maintained to a decreasing trend since 1979, which leading to a negative correlation with the ground-level UV-B irradiance doting the given period of cloudless day: UV-B=239.23-0.056 TO (R$^2$=0.52). The statistical predictions of daily total ozone are analyzed by using the data of the Brewer spectrophotometer and TOMS in East Asia including the Korean peninsula. The long-term monthly averages of total ozone using the multiplicative seasonal AutoRegressive Integrated Moving Average (ARIMA) model are used to predict the hourly mean UV-B irradiance by interpolating the daily mean total ozone far the predicting period. We also can predict the next day's total ozone by using regression models based on the present day's total ozone by TOMS and the next day's predicted maximum air temperature by the Meteorological Mesoscale Model 5 (MM5). These predicted and observed total ozone amounts are used to input data of the parameterization model (PM) of hourly UV-B irradiance. The PM of UV-B irradiance is based on the main parameters such as cloudiness, solar zenith angle, total ozone, opacity of aerosols, altitude, and surface albedo. The input data for the model requires daily total ozone, hourly amount and type of cloud, visibility and air pressure. To simplify cloud effects in the model, the constant cloud transmittance are used. For example, the correlation coefficient of the PM using these cloud transmissivities is shown high in more than 0.91 for cloudy days in Busan, and the relative mean bias error (RMBE) and the relative root mean square error (RRMSE) are less than 21% and 27%, respectively. In this study, the daily variations of calculated and predicted UV-B irradiance are presented in high correlation coefficients of more than 0.86 at each monitoring site of the Korean peninsula as well as East Asia. The RMBE is within 10% of the mean measured hourly irradiance, and the RRMSE is within 15% for hourly irradiance, respectively. Although errors are present in cloud amounts and total ozone, the results are still acceptable.

Feasibility of the Lapse Rate Prediction at an Hourly Time Interval (기온감률의 일중 경시변화 예측 가능성)

  • Kim, Soo-ock;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.1
    • /
    • pp.55-63
    • /
    • 2016
  • Temperature lapse rate within the planetary boundary layer shows a diurnal cycle with a substantial variation. The widely-used lapse rate value for the standard atmosphere may result in unaffordable errors if used in interpolating hourly temperature in complex terrain. We propose a simple method for estimating hourly lapse rate and evaluate whether this scheme is better than the conventional method using the standard lapse rate. A standard curve for lapse rate based on the diurnal course of temperature was drawn using upper air temperature for 1000hPa and 925hPa standard pressure levels. It was modulated by the hourly sky condition (amount of clouds). In order to test the reliability of this method, hourly lapse rates for the 500-600m layer over Daegwallyeong site were estimated by this method and compared with the measured values by an ultrasonic temperature profiler. Results showed the mean error $-0.0001^{\circ}C/m$ and the root mean square error $0.0024^{\circ}C/m$ for this vertical profile experiment. An additional experiment was carried out to test if this method is applicable for the mountain slope lapse rate. Hourly lapse rates for the 313-401m slope range in a complex watershed ('Hadong Watermark 2') were estimated by this method and compared with the observations. We found this method useful in describing diurnal cycle and variation of the mountain slope lapse rate over a complex terrain despite larger error compared with the vertical profile experiment.

Validation for SOC Estimation from OC and EC concentration in PM2.5 measured at Seoul (서울 대기 중 PM2.5 내 OC와 EC로부터 SOC 추정방법의 비교 평가)

  • Yoo, Ha Young;Kim, Ki Ae;Kim, Yong Pyo;Jung, Chang Hoon;Shin, Hye Jung;Moon, Kwang Ju;Park, Seung Myung;Lee, Ji Yi
    • Particle and aerosol research
    • /
    • v.16 no.1
    • /
    • pp.19-30
    • /
    • 2020
  • The organic carbon in the ambient particulate matter (PM) is divided into primary organic carbon (POC) and secondary organic carbon (SOC) by their formation way. To regulate PM effectively, the estimation of the amount of POC and SOC separately is one of important consideration. Since SOC cannot be measured directly, previous studies have evaluated determination of SOC by the EC tracer method. The EC tracer method is a method of estimating the SOC value from calculating the POC by determining (OC/EC)pri which is the ratio of the measured values of OC and EC from the primary combustion source. In this study, three different ways were applied to OC and EC concentrations in PM2.5 measured at Seoul for determining (OC/EC)pri: 1) the minimum value of OC/EC ratio during the measurement period; 2) regression analysis of OC vs. EC to select the lower 5-20% OC/EC ratio; 3) determining the OC/EC ratio which has lowest correlation coefficient value (R2) between EC and SOC which is reported as minimum R squared method (MRS). Each (OC/EC)pri ratio of three ways are 0.35, 1.22, and 1.77, respectively from the 1 hourly data. We compared the (OC/EC)pri ratio from 1hourly data with 24 hourly data and revealed that (OC/EC)pri estimated from 24 hourly data had twice larger than 1hourly data due to the low time resolution of sampling. We finally confirmed that the most appropriate value of (OC/EC)pri is that calculated by a regression analysis of 1 hourly data and estimated SOC amounts at PM2.5 of the Seoul atmosphere.

Estimation of hourly daytime air temperature on slope in complex terrain corrected by hourly solar radiation (복잡지형 경사면의 일사 영향을 반영한 매시 낮 기온 추정 방법)

  • Yun, Eun-jeong;Kim, Soo-ock
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.4
    • /
    • pp.376-385
    • /
    • 2018
  • To estimate the hourly temperature distribution due to solar radiation during the day, on slope in complex terrain, an empirical formula was developed including the hourly deviation in the observed temperature following solar radiation deviation, at weather stations on the east-facing and west-facing slopes. The solar radiation effect was simulated using the empirical formula to estimate hourly temperature at 11 weather observation sites in mountainous agricultural areas, and the result was verified for the period from January 2015 to December 2017. When the estimated temperature was compared with the control, only considering temperature lapse rate, it was found that the tendency to underestimate the temperature from 9 am to 3 pm was reduced with the use of an empirical formula in the form of linear expression; consequently, the estimation error was reduced as well. However, for the time from 5 pm to 6 pm, the estimation error was smaller when a hyperbolic equation drawn from the deviation in solar radiation on the slope, which was calculated based on geometric conditions, was used instead of observed values. The reliability of estimating the daytime temperature at 3 pm was compared with existing estimation model proposed in other studies; the estimation error could be mitigated up to an ME (mean error) of $-0.28^{\circ}C$ and RMSE (root mean square error) of $1.29^{\circ}C$ compared to the estimation error in previous models (ME $-1.20^{\circ}C$, RMSE $2.01^{\circ}C$).