• Title/Summary/Keyword: Hourly

Search Result 1,153, Processing Time 0.035 seconds

Internet-based Information System for Agricultural Weather and Disease and Insect fast management for rice growers in Gyeonggi-do, Korea

  • S.D. Hong;W.S. Kang;S.I. Cho;Kim, J.Y.;Park, K.Y;Y.K. Han;Park, E.W.
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.108.2-109
    • /
    • 2003
  • The Gyeonggi-do Agricultural Research and Extension Services has developed a web-site (www.epilove.com) in collaboration with EPINET to provide information on agricultural weather and rice disease and insect pest management in Gyeonggi-do. Weather information includes near real-time weather data monitored by automated weather stations (AWS) installed at rice paddy fields of 11 Agricultural Technology Centers (ATC) in Gyeonggi-do, and weekly weather forecast by Korea Meteorological Administration (KMA). Map images of hourly air temperature and rainfall are also generated at 309m x 309m resolution using hourly data obtained from AWS installed at 191 locations by KMA. Based on near real-time weather data from 11 ATC, hourly infection risks of rice blast, sheath blight, and bacterial grain rot for individual districts are estimated by disease forecasting models, BLAST, SHBLIGHT, and GRAINROT. Users can diagnose various diseases and insects of rice and find their information in detail by browsing thumbnail images of them. A database on agrochemicals is linked to the system for disease and insect diagnosis to help users search for appropriate agrochemicals to control diseases and insect pests.

  • PDF

Hourly Water Level Simulation in Tancheon River Using an LSTM (LSTM을 이용한 탄천에서의 시간별 하천수위 모의)

  • Park, Chang Eon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.4
    • /
    • pp.51-57
    • /
    • 2024
  • This study was conducted on how to simulate runoff, which was done using existing physical models, using an LSTM (Long Short-Term Memory) model based on deep learning. Tancheon, the first tributary of the Han River, was selected as the target area for the model application. To apply the model, one water level observatory and four rainfall observatories were selected, and hourly data from 2020 to 2023 were collected to apply the model. River water level of the outlet of the Tancheon basin was simulated by inputting precipitation data from four rainfall observation stations in the basin and average preceding 72-hour precipitation data for each hour. As a result of water level simulation using 2021 to 2023 data for learning and testing with 2020 data, it was confirmed that reliable simulation results were produced through appropriate learning steps, reaching a certain mean absolute error in a short period time. Despite the short data period, it was found that the mean absolute percentage error was 0.5544~0.6226%, showing an accuracy of over 99.4%. As a result of comparing the simulated and observed values of the rapidly changing river water level during a specific heavy rain period, the coefficient of determination was found to be 0.9754 and 0.9884. It was determined that the performance of LSTM, which aims to simulate river water levels, could be improved by including preceding precipitation in the input data and using precipitation data from various rainfall observation stations within the basin.

Development of a Oak Pollen Emission and Transport Modeling Framework in South Korea (한반도 참나무 꽃가루 확산예측모델 개발)

  • Lim, Yun-Kyu;Kim, Kyu Rang;Cho, Changbum;Kim, Mijin;Choi, Ho-seong;Han, Mae Ja;Oh, Inbo;Kim, Baek-Jo
    • Atmosphere
    • /
    • v.25 no.2
    • /
    • pp.221-233
    • /
    • 2015
  • Pollen is closely related to health issues such as allergenic rhinitis and asthma as well as intensifying atopic syndrome. Information on current and future spatio-temporal distribution of allergenic pollen is needed to address such issues. In this study, the Community Multiscale Air Quality Modeling (CMAQ) was utilized as a base modeling system to forecast pollen dispersal from oak trees. Pollen emission is one of the most important parts in the dispersal modeling system. Areal emission factor was determined from gridded areal fraction of oak trees, which was produced by the analysis of the tree type maps (1:5000) obtained from the Korea Forest Service. Daily total pollen production was estimated by a robust multiple regression model of weather conditions and pollen concentration. Hourly emission factor was determined from wind speed and friction velocity. Hourly pollen emission was then calculated by multiplying areal emission factor, daily total pollen production, and hourly emission factor. Forecast data from the KMA UM LDAPS (Korea Meteorological Administration Unified Model Local Data Assimilation and Prediction System) was utilized as input. For the verification of the model, daily observed pollen concentration from 12 sites in Korea during the pollen season of 2014. Although the model showed a tendency of over-estimation in terms of the seasonal and daily mean concentrations, overall concentration was similar to the observation. Comparison at the hourly output showed distinctive delay of the peak hours by the model at the 'Pocheon' site. It was speculated that the constant release of hourly number of pollen in the modeling framework caused the delay.

Design Hourly Factor Estimation with Railway Passenger Data (철도이용객데이터를 이용한 철도역사 설계시간계수 산정연구)

  • Oh, Tae ho;Lee, Seon ha;Cheon, Choon keun;Yu, Byung young;Lee, Sang Jae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.1
    • /
    • pp.64-77
    • /
    • 2017
  • Domestic railway station calculates average number of passenger per day by considering future regional society and development of industrial economy etc, is carrying out designs on railway station scale. However, problems are being suggested situationally because selected average passenger data does not consider passengers having been diversified for a year. For representative example, confusion of Gwangju-Songjeong Railway Station got worse due to passengers whose number is more than original plan since the opening. Therefore, this study quotes the concept of design hourly factor using in designing roads to consider passengers having been diversified for a year in railway field. In order to calculate factor, collecting railway passenger data and also estimate, reliability verification were executed by using exponential model and 3rd equation model. As a result of deducing design hourly factor through inflection point calculation, utilizing exponen tial model is analyzed to well reflect the value of design hourly factor on railway passengers.

Landslide Characteristics induced by Heavy Rainfall in Samcheok Area (집중호우시 발생된 삼척지역의 산사태 특성)

  • Song Young-Suk;Jang Yoon-Ho;Kim Jin-Seok
    • The Journal of Engineering Geology
    • /
    • v.15 no.4 s.42
    • /
    • pp.435-445
    • /
    • 2005
  • Landslides induced by heavy rainfall from typhoon 'Rusa' in 2002 and typhoon 'Meami' in 2003 were investigated at Samcheok area, and the relationship between landslides and rainfall on that area was analyzed. The average annual rainfall at Samcheok area is generally $1,200mm\~1,300mm$. However, the average annual rainfall at samcheok for 2003 and ton was increased more than 2,000mm because of typhoon 'Rusa' and typhoon 'Meami'. The number of landslides and the landslides area are largely occurred in a area of the relatively high maximum hourly rainfall and 2days cumulative rainfall. Therefore, it confirmed that landslides are directly depended on the hourly rainfall and the cumulative rainfall. The landslides at Samcheok area induced by heavy rainfall due to typhoon are more influenced by the maximum hourly rainfall at the landslide occurrence day. In order to predict a rational landslide size, a new method included the maximum hourly rainfall and the landslide area in a traditional way was proposed. As the result of applying the new proposed method, the landslide size at Samcheok area is involved in the large scale landslide.

A Comparative Effect of Meperidine between Intravenous and Epidural Patient-Controlled Analgesia for the Postoperative Pain Relief after Cesarean Section (제왕절개 수술후 통증조절을 위해 PCA를 이용한 정맥과 경막외 Meperidine 투여효과의 비교)

  • Lee, Byung-Ho;Chea, Jun-Seuk;Chung, Mee-Young;Byun, Hyung-Jin
    • The Korean Journal of Pain
    • /
    • v.8 no.2
    • /
    • pp.257-265
    • /
    • 1995
  • Patient-Controlled Analgesia (PCA) has been widely used for postoperative pain relief. Meperidine is useful for PCA and has efficient analgesia, rapid onset, and low incidence of adverse effect. To compare the analgesic effect, total dose and hourly dose, side effect and neonatal status of breast feeding with meperidine via intravenous or epidural PCA for 48 hours after Cesarean Section, 40 parturient women undergoing elective Cesarean Section were randomly divided into two groups. Each respective group of 20 parturient women received meperidine via one of the intravenous PCA after general anesthesia with enflurane (IVPCA group) and the epidural PCA after general anesthesia with enflurane (IVPCA group) and the epidural PCA after epidural block with 2% lidocaine 20ml combined with general anesthesia with only $N_2O$ and $O_2$ (EpiPCA group) when they first complained of pain in recovery room. Following the administration of analgesic initial dose, parturient women of IVPCA group were allowed intravenous meperidine 10 mg every 8 minutes when they felt pain. The EpiPCA group received additional bolus dose of meperidine 2 mg and bupivacaine 0.7 mg were administered every 8 minutes as requested the patients with hourly continuous infusion of meperidine 4 mg and bupivacaine 1.4 mg. Data was collected during the 48 hours observation period including visual analog scale (VAS) pain scores, total meperidine dose, hourly dose during 48 hours and each time interval, incidence of adverse effect, satisfaction, and neonatal status with breast feeding. VAS pain scores of analgesic effect in EpiPCA group was significantly lower than in IVPCA group at 2 hours after the initial pain after Cesarean Section. Total dose and hourly dose of meperidine significantly reduced in EpiPCA group. Hourly dose of meperidine at each time interval significantly reduced during first 6 hours and from 12 hours to 24 hours in EpiPCA group. The side effects in IVPCA group were mainly sedation, nausea, and local irritation of skin. And EpiPCA group experienced numbness and itching. The degree of satisfaction of parturient women was 88.2 % in IVPCA group and 85.7 % in EpiPCA group. We did not observe any sedation, abnormal behavior, or seizure like activity in any neonates of breast feeding. From the above results we conclude that epidural PCA was more efficiently analgesic, less sedative, and consumptional, and safer for neonate than intravenous PCA, and could be an alternative method to intravenous PCA.

  • PDF

Water Level Prediction on the Golok River Utilizing Machine Learning Technique to Evaluate Flood Situations

  • Pheeranat Dornpunya;Watanasak Supaking;Hanisah Musor;Oom Thaisawasdi;Wasukree Sae-tia;Theethut Khwankeerati;Watcharaporn Soyjumpa
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.31-31
    • /
    • 2023
  • During December 2022, the northeast monsoon, which dominates the south and the Gulf of Thailand, had significant rainfall that impacted the lower southern region, causing flash floods, landslides, blustery winds, and the river exceeding its bank. The Golok River, located in Narathiwat, divides the border between Thailand and Malaysia was also affected by rainfall. In flood management, instruments for measuring precipitation and water level have become important for assessing and forecasting the trend of situations and areas of risk. However, such regions are international borders, so the installed measuring telemetry system cannot measure the rainfall and water level of the entire area. This study aims to predict 72 hours of water level and evaluate the situation as information to support the government in making water management decisions, publicizing them to relevant agencies, and warning citizens during crisis events. This research is applied to machine learning (ML) for water level prediction of the Golok River, Lan Tu Bridge area, Sungai Golok Subdistrict, Su-ngai Golok District, Narathiwat Province, which is one of the major monitored rivers. The eXtreme Gradient Boosting (XGBoost) algorithm, a tree-based ensemble machine learning algorithm, was exploited to predict hourly water levels through the R programming language. Model training and testing were carried out utilizing observed hourly rainfall from the STH010 station and hourly water level data from the X.119A station between 2020 and 2022 as main prediction inputs. Furthermore, this model applies hourly spatial rainfall forecasting data from Weather Research and Forecasting and Regional Ocean Model System models (WRF-ROMs) provided by Hydro-Informatics Institute (HII) as input, allowing the model to predict the hourly water level in the Golok River. The evaluation of the predicted performances using the statistical performance metrics, delivering an R-square of 0.96 can validate the results as robust forecasting outcomes. The result shows that the predicted water level at the X.119A telemetry station (Golok River) is in a steady decline, which relates to the input data of predicted 72-hour rainfall from WRF-ROMs having decreased. In short, the relationship between input and result can be used to evaluate flood situations. Here, the data is contributed to the Operational support to the Special Water Resources Management Operation Center in Southern Thailand for flood preparedness and response to make intelligent decisions on water management during crisis occurrences, as well as to be prepared and prevent loss and harm to citizens.

  • PDF

An Analysis on the Variation Trend of Urban Heat Island in Busan Area (2006-2010) (부산지역 도시 열섬의 변화경향 분석 (2006-2010))

  • Do, Woo-Gon;Jung, Woo-Sik
    • Journal of Environmental Science International
    • /
    • v.21 no.8
    • /
    • pp.953-963
    • /
    • 2012
  • The annual variations of the urban heat island in Busan is investigated using surface temperature data measured at 3 automatic weather stations(AWSs) for the 5 years period, 2006 to 2010. Similar to previous studies, the intensity of the urban heat island is calculated using the temperature difference between downtown(Busanjin, Dongnae) and suburb(Gijang). The maximum hourly mean urban heat island are $1.4^{\circ}C$ at Busanjin site, 2300LST and $1.6^{\circ}C$ at Dongnae site, 2100LST. It occurs more often at Dongnae than Busanjin. Also the maximum hourly mean urban heat island appears in November at both sites. The urban heat island in Busan is stronger in the nighttime than in the daytime and decreases with increasing wind speed, but it is least developed in summer. Also it partly causes the increasement of nighttime PM10 concentration.

System Modeling for Operating Efficiency Analysis of Photovoltaics (태양광발전의 운용효율분석을 위한 시스템 모델링)

  • 최연옥;조금배;백형래;정헌상;이만근;정명웅
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.380-385
    • /
    • 1997
  • The primary concern in designing any PV system is the determination of its optimum size. It is generally inadequate to use monthly or daily average insolation, and estimated number of continuous no sun days to determine array and battery capacities because the dynamic behavior of PV system and the stochastic nature of solar radiation also significantly influence the required array and storage capacity. Simulation method uses hourly meterological data and hourly load data to simulate the energy flow in a PV system, and predicts the system reliabilities under assumed array and battery sizes. Stand alone system for operating efficiency analysis of Photovoltaics system were discribed in this paper.

  • PDF