• Title/Summary/Keyword: Hough circle

Search Result 35, Processing Time 0.023 seconds

A Runge-Kutta scheme for smart control mechanism with computer-vision robotics

  • ZY Chen;Huakun Wu;Yahui Meng;Timothy Chen
    • Smart Structures and Systems
    • /
    • v.34 no.2
    • /
    • pp.117-127
    • /
    • 2024
  • A novel approach that the smart control of robotics can be realized by a fuzzy controller and an appropriate Runge-Kutta scheme in this paper. A recently proposed integral inequality is selected based on the free weight matrix, and the less conservative stability criterion is given in the form of linear matrix inequalities (LMIs). We demonstrate that this target information obtained through image processing is subjected to smart control with computer-vision robotic to Arduino, and the infrared beacon was utilized for the operation of practical illustrations. A fuzzy controller derived with a fuzzy Runge-Kutta type functions is injected into the system and then the system is stabilized asymptotically. In this study, a fuzzy controller and a fuzzy observer are proposed via the parallel distributed compensation technique to stabilize the system. This paper achieves the goal of real-time following of three vehicles and there are many areas where improvements were made. Finally, each information is transmitted to Arduino via I2C to follow the self-propelled vehicle. The proposed calculation is approved in reproductions and ongoing smart control tests.

Automatic Extraction of Ascending Aorta and Ostium in Cardiac CT Angiography Images (심장 CT 혈관 조영 영상에서 대동맥 및 심문 자동 검출)

  • Kim, Hye-Ryun;Kang, Mi-Sun;Kim, Myoung-Hee
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.1
    • /
    • pp.49-55
    • /
    • 2017
  • Computed tomographic angiography (CTA) is widely used in the diagnosis and treatment of coronary artery disease because it shows not only the whole anatomical structure of the cardiovascular three-dimensionally but also provides information on the lesion and type of plaque. However, due to the large size of the image, there is a limitation in manually extracting coronary arteries, and related researches are performed to automatically extract coronary arteries accurately. As the coronary artery originate from the ascending aorta, the ascending aorta and ostium should be detected to extract the coronary tree accurately. In this paper, we propose an automatic segmentation for the ostium as a starting structure of coronary artery in CTA. First, the region of the ascending aorta is initially detected by using Hough circle transform based on the relative position and size of the ascending aorta. Second, the volume of interest is defined to reduce the search range based on the initial area. Third, the refined ascending aorta is segmented by using a two-dimensional geodesic active contour. Finally, the two ostia are detected within the region of the refined ascending aorta. For the evaluation of our method, we measured the Euclidean distance between the result and the ground truths annotated manually by medical experts in 20 CTA images. The experimental results showed that the ostia were accurately detected.

Iris Detection at a Distance by Non-volunteer Method (비강압적 방법에 의한 원거리에서의 홍채 탐지 기법)

  • Park, Kwon-Do;Kim, Dong-Su;Kim, Jeong-Min;Song, Young-Ju;Koh, Seok-Joo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.705-708
    • /
    • 2018
  • Among biometrics commercialized for security, iris recognition technology has the most excellent security for the probability of the match between individuals is the lowest. Current commercialized iris recognition technology has excellent recognition ability, but this technology has a fatal drawback. Without the user's active cooperation, it cannot recognize the iris correctly. To make up for this weakness, recent trend of iris recognition development mounts a non-volunteering, unconstrained method. According to this information, the objective of this research is developing a module that can identify people iris from a video acquired by high performance infrared camera in a range of 3m and in a involuntary way. For this, we import images from the video and find people's face and eye positions from the images using Haar classifier trained through Cascade training method. finally, we crop the iris by Hough circle transform and compare it with data from the database to identify people.

  • PDF

A Framework of Recognition and Tracking for Underwater Objects based on Sonar Images : Part 1. Design and Recognition of Artificial Landmark considering Characteristics of Sonar Images (소나 영상 기반의 수중 물체 인식과 추종을 위한 구조 : Part 1. 소나 영상의 특성을 고려한 인공 표식물 설계 및 인식)

  • Lee, Yeongjun;Lee, Jihong;Choi, Hyun-Taek
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.2
    • /
    • pp.182-189
    • /
    • 2014
  • This paper proposed a framework of recognition and tracking for underwater objects using sonar images as an alternative of underwater optical camera which has the limitation of usage due to turbidity. In Part 1, a design and recognition method for 2D artificial landmark was proposed considering the practical performance of current imaging sonars. In particular, its materials are selected in order to maximize detectability based on characteristics of imaging sonar and ultrasonic waves. It has a simple and omni-directional shape which allows an easy modeling of object, and it includes region based features as identifications. Also, we proposed a real-time recognition algorithm including edge detector, Hough circle transforms, and shape matrix based recognition algorithm. The proposed methods are verified by basin tests using DIDSON.

A Study on Ball Tracking Algorithm to Analyze Amateur Futsal Data (아마추어 풋살 데이터 분석을 위한 공 추적 알고리즘 연구)

  • Jung, Soogyung;Kwon, Hangil;Lee, Gilhyeong;Jung, Halim;Ko, Dongbeom;Jeon, Gwangil;Park, Jeongmin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.4
    • /
    • pp.189-198
    • /
    • 2021
  • This paper introduces the ball tracking system using image processing. The recent growth of the amateur futsal market has also raised requests for an analysis of amateur players' performance. Sports game analysis services for feedback and growth to athletes or teams are provided in various ways in various sports fields. However, the cost and spatial constraints of sports analysis services make it difficult for providing analysis services to amateur athletes. In this paper, we study and develop a ball tracking algorithm for analyzing futsal game based on the match filming service previously provided in the amateur futsal field. This allows the analysis of the match based on existing services.