• Title/Summary/Keyword: Hot-rolled steel

Search Result 167, Processing Time 0.019 seconds

The Analysis of Width Deformation Behavior in Thin Slab Casting and Rolling Process (박슬라브 열간압연공정에서 폭거동해석)

  • 박해두;김형전;송길호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.249-252
    • /
    • 1997
  • Mini-mill process which is one of the new steel making process to be able to produce the hot rolled strip by thin slab caster, was completed in the kwangyang steel work. The new process was constructed liquid core deduction, tandem reduction unit, induction heater, coil box and finishing mill to be varied width. Therefore, in oder to make sure of target strip width, analysis of actual plant data was done to fine out amount of width deviation. Finally, the predication system of width in the mini-mill process was developed to included temperature caculation model.

  • PDF

Comparison with R Curve Behavior fer the K and J Parameter of structural Steel Hot-Rolled Thin Plates (일반구조용강 열간압연 박판의 K와 J 파라미터에 대한 R곡선 거동의 비교)

  • 이계승;이억섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.812-815
    • /
    • 2002
  • The shape of K-R curve for an ideally brittle material is flat because the surface energy is an unvaried material property. However, the K-R curve can take on a variety of shapes when nonlinear material behavior accompanies fracture. By the way, a general metallic material is nonlinear, structural steel is such. Therefore, the J-R curve form J-integral value instead of K parameters can be used to evaluate elastic-plastic materials with flaws in terms of ductile fracture that can be significant to design. In this paper, R-curve behaviors form K and J parameter is considered for the precise assessment of fracture analysis, in case of JS-SS400 steels.

  • PDF

Cost optimization of composite floor trusses

  • Klansek, Uros;Silih, Simon;Kravanja, Stojan
    • Steel and Composite Structures
    • /
    • v.6 no.5
    • /
    • pp.435-457
    • /
    • 2006
  • The paper presents the cost optimization of composite floor trusses composed from a reinforced concrete slab of constant depth and steel trusses consisting of hot rolled channel sections. The optimization was performed by the nonlinear programming approach, NLP. Accordingly, a NLP optimization model for composite floor trusses was developed. An accurate objective function of the manufacturing material, power and labour costs was proposed to be defined for the optimization. Alongside the costs, the objective function also considers the fabrication times, and the electrical power and material consumption. Composite trusses were optimized according to Eurocode 4 for the conditions of both the ultimate and the serviceability limit states. A numerical example of the optimization of the composite truss system presented at the end of the paper demonstrates the applicability of the proposed approach.

Strengthening of capacity deficient RC beams - An experimental approach

  • Dar, M. Adil;Subramanian, N.;Dar, A.R.;Rather, Amer Iliyas;Atif, Mir;Syed, Sayeeda
    • Structural Engineering and Mechanics
    • /
    • v.70 no.3
    • /
    • pp.303-310
    • /
    • 2019
  • Any revision of seismic codes usually demands a higher capacity from structural members, making existing structures unsafe particularly from strength considerations. Retrofitting of capacity deficient members is very suitable for tackling such situations. This paper presents an experimental study on different retrofitting measures adopted for strengthening a series of reinforced concrete (RC) beams. Four identical RC beam specimens were casted, out of which three specimens were strengthened by different schemes (viz., bolted hot rolled flat, bolted cold-formed steel channel, and carbon fibre reinforced polymer (CFRP) laminate, respectively) on their tension face and tested under four-point monotonic loading. This study focuses on the investigation of the flexural behaviour of these retrofitted beams, observed in terms of strength and stiffness. It was concluded that all retrofitting measures improved the structural performance of these beams. However, the cost involved with each strengthening mode was proportional to the improvement in the performance achieved.

Experimental and theoretical behaviour analysis of steel suspension members subjected to tension and bending

  • Kmet, Stanislav;Tomko, Michal;Bin, Molinne
    • Steel and Composite Structures
    • /
    • v.13 no.4
    • /
    • pp.343-365
    • /
    • 2012
  • Steel suspension members subjected to tension and bending offer an economical and efficient alternative for many structural problems. This paper is concerned with the elastic and elastic-plastic behaviour of suspension members with bending stiffness subjected to vertical point and uniformly distributed loads. An experimental study is described which focuses on the response of three suspension members with various T-shaped steel hot rolled sections and geometric configurations. The tests enable direct assessment of the influence of a key parameter such as the sag-to-span ratio on the response of suspension members. Detailed nonlinear finite-element models are generated to provide a tool for theoretical analyses and to facilitate further understanding of the behaviour. Results demonstrate that experimentally obtained responses can generally be closely predicted numerically because there are relatively good agreements between finite element and tests results. The results and observations of subsequent numerical parametric studies offer an insight into the key factors that govern the behaviour of suspension members with bending stiffness in the elastic-plastic range.

Structural performance of cold-formed steel composite beams

  • Dar, M. Adil;Subramanian, N.;Anbarasu, M.;Dar, A.R.;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.27 no.5
    • /
    • pp.545-554
    • /
    • 2018
  • This study presents a novel method of improving the strength and stiffness of cold-formed steel (CFS) beams. Flexural members are primary members in most of the structures. Hence, there is an urgent need in the CFS industry to look beyond the conventional CFS beam sections and develop novel techniques to address the severe local buckling problems that exist in CFS flexural members. The primary objective of this study was to develop new CFS composite beam sections with improved structural performance and economy. This paper presents an experimental study conducted on different CFS composite beams with simply supported end conditions under four point loading. Material properties and geometric imperfections of the models were measured. The test strengths of the models are compared with the design strengths predicted by using Australian/New Zealand Standard for cold-formed steel structures. Furthermore, to ensure high precision testing, a special testing rig was also developed for testing of long span beams. The description of test models, testing rig features and test results are presented here. For better interpretation of results, a comparison of the test results with a hot rolled section is also presented. The test results have shown that the proposed CFS composite beams are promising both in terms of better structural performance as well as economy.

Effect of Initial Microstructure, Cold Rolling and Temperature on the Spheroidization Rate of Cementite in High Carbon Steel (고탄소강의 구상화속도에 미치는 초기 미세조직, 냉간압연 및 온도의 영향)

  • Kim, J.H.;Ha, T.K.
    • Transactions of Materials Processing
    • /
    • v.22 no.3
    • /
    • pp.158-164
    • /
    • 2013
  • The spheroidization behavior of cementite in a SK85 high carbon steel was investigated in this study. Fine and coarse pearlite microstructures were obtained by appropriate heat treatments according to the TTT diagram of SK85 high carbon steel. Hot rolled plates of SK85 steel were austenitized at $800^{\circ}C$ for 2 hrs and then put directly into a salt bath at either $570^{\circ}C$ or $670^{\circ}C$ to obtain a fine pearlite (FP) structure and a coarse pearlite (CP) structure, respectively. Cold rolling was subsequently conducted on those specimens with reduction ratios from 0.2 to 0.4. Spheroidization heat treatments were conducted at the subcritical temperatures of 600 and $720^{\circ}C$ for 1 to 32 hrs to elucidate the effect of initial microstructures, heat treatment temperature, and cold reduction ratios on the cementite spheroidization rate. Spheroidization proceeded with fragmentation of cementite plates, spheroidization of the cementite platelets, and coarsening consecutively. Mechanical fragmentation of cementite by cold rolling expedited the rate of spheroidization. The spheroidization rate of FP was much more rapid than that of CP and the spheriodization rate increased with increases in the cold reduction ratio.

Chip Forming Characteristics of Bi-S Free Machining Steel (Bi-S 쾌삭강의 칩생성특성)

  • 조삼규
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.3
    • /
    • pp.48-54
    • /
    • 2000
  • In this study the characteristics of chip formation of the cold drawn Bi-S free machining steels were assessed. And for comparison those of the cold drawn Pb-S free machining steel the hot rolled low carbon steel which has MnS as free machining inclusions and the conventional steels were also investigated. During chip formation the cold drawn free machining steels show relatively little change in thickness and width of chip compare to those of the conventional carbon steels. And a single parameter which indicates the degree of deformation during chip formation chip cross-section area ratio is introduced. The chip cross-section area ratio is defined as chip cross-section area is divided by undeformed chip cross-section area. The variational patters of the chip cross-section area ratio of the materials cut are similar to those of the shear strain values. The shear stress however seems to be dependent on the carbon content of the materials. The cold drawn Bi-S and Pb-S steels show nearly the same chip forming behaviors and the energy consumed during chip formation is almost same. A low carbon steel without free machining aids shows poor chip breakability due to its high ductility. By introducing a small amount of free machining inclusions such as MnS Bi, Pb or merely increasing carbon content the chip breakability improves significantly.

  • PDF

Experimental investigation and numerical analysis of optimally designed composite beams with corrugated steel webs

  • Erdal, Ferhat;Tunca, Osman;Ozcelik, Ramazan
    • Steel and Composite Structures
    • /
    • v.37 no.1
    • /
    • pp.1-14
    • /
    • 2020
  • Composite beams with corrugated steel webs represent a new innovative system which has emerged in the past decade for medium span in the construction technology. The use of composite beams with corrugated steel webs results in a range of benefits, including flexible spaces and reduced foundation costs in the construction technology. The thin corrugated web affords a significant weight reduction of these beams, compared with hot-rolled or welded ones. In the current research, an optimal designed I-girder beam with corrugated web has been proposed to improve the structural performance of continuous composite girder under bending moment. The experimental program has been conducted for six simply supported composite beams with different loading conditions. The tested specimens are designed by using one of the stochastic techniques called hunting search algorithm. In the optimization process, besides the thickness of concrete slab and studs, corrugated web properties are considered as design variables. The design constraints are respectively implemented from Eurocode 3, BS-8110 and DIN 18-800 Teil-1. The last part of the study focuses on performing a numerical study on composite beams by utilizing finite element analysis and the bending behavior of steel girders with corrugated webs experimentally and numerically verified the results. A nonlinear analysis was carried out using the finite element software ANSYS on the composite beams which were modelled using the elements ten-node high order quadrilateral type.

Chip Forming Characteristics of Bi-S Free Machining Steel (Bi-S 쾌삭강의 칩생성특성)

  • 이영문
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.351-356
    • /
    • 1999
  • In this study, the characteristics of chip formation of the cold drawn Bi-S free machining steels were assessed. And for comparison, those of the cold drawn Pb-S free machining steel, the hot rolled low carbon steel which has MnS as free machining inclusions and the conventional steels were also investigated. During chip formation, the cold drawn free machining steels show relatively little change in thickness and width of chip compare to those of the conventional carbon steels. And a single parameter which indicates the degree of deformation during chip formation, 'chip cross-section area ratio' is introduced. The chip cross-section area. The variational patterns of cross-section area is divided by undeformed chip cross-section area. The variational patterns of the chip cross-section area ratio of the materials cut are similar to those of the shear strain values. The shear stress, however, seems to be dependent on the carbon content of the materials. The cold drawn BiS and Pb-S steels show nearly the same chip forming behaviors and the energy consumed during chip formation is almost same. A low carbon steel without free machining aids shows poor chip breakability due to its high ductility. By introducing a small amount of non-metallic inclusions such as MnS, Bi, Pb or merely increasing carbon content the chip breakability improves significantly.

  • PDF